[2] Wolf D, Prankl J, Vincze M. Fast semantic segmentation of 3D point clouds using a dense CRF with learned parameters. [C]∥International Conference on Robotics and Automation (ICRA), May 26-30, 2015, Seattle, WA, USA. New York: IEEE, 4867-4873(2015).
[3] Freedman D, Zhang T. Interactive graph cut based segmentation with shape priors. [C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE, 755-762(2005).
[11] Chen L C, Papandreou G, Kokkinos I, fully connected CRFs[EB/OL] et al. -06-07)[2018-06-30]. https:∥arxiv., org/abs/1412, 7062(2016).
[12] Chen L C, Papandreou G, Schroff F et al. -12-05)[2018-06-30]. https:∥arxiv., org/abs/1706, 05587(2017).
[13] Yu F. -04-30)[2018-06-30]. https:∥arxiv., org/abs/1511, 07122(2016).
[14] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 3690-3695(2017).
[15] He K M, Zhang X Y, Ren S Q et al[M]. Spatial pyramid pooling in deep convolutional networks for visual recognition, 346-361(2014).
[18] Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation. [C]∥Fourth International Conference on 3D Vision (3DV), October 25-28, 2016, Stanford, CA, USA. New York: IEEE, 565-571(2016).
[19] Ronneberger O, Fischer P, Brox T[M]. U-Net: convolutional networks for biomedical image segmentation, 234-241(2015).
[20] Çiçek Ö, Abdulkadir A, Lienkamp S S et al[M]. 3D U-Net: learning dense volumetric segmentation from sparse annotation, 424-432(2016).
[21] Szegedy C, Ioffe S, Vanhoucke V et al. -08-23)[2018-06-30]. https:∥arxiv., org/abs/1602, 07261(2016).
[22] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).
[24] Chen H, Dou Q, Yu L et al. -04-21)[2018-06-30]. https:∥arxiv., org/abs/1608, 05895(2016).
[27] Cai J, Lu L, Xie Y, direct loss function[EB/OL] et al. -07-18)[2018-06-30]. https:∥arxiv., org/abs/1707, 04912(2017).
[28] Menze B H, Jakab A, Bauer S et al. The multimodal brain tumor image segmentation benchmark (BRATS). [C]∥IEEE Transactions on Medical Imaging, December 4, 2014. New York: IEEE, 1993-2024(2015).
[30] Bakas S, Akbari H, Sotiras A et al. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection [2018-08-30]. https:∥doi.org/10.7937/K9/[2018-08-30]. TCIA., KLXWJJ1Q(2017).
[31] Paszke A, Gross S, Chintala S et al[2018-08-30]. Automatic differentiation in PyTorch https:∥openreview.net/pdf?id=BJJsrmfCZ..
[32] Kingma D P. -01-30)[2018-08-30]. https:∥arxiv., org/abs/1412, 6980(2017).