[1] W. Chen, J. Xu, X. Zhao. Separated sonar localization system for indoor robot navigation. IEEE Trans. Ind. Electron., 68, 6042-6052(2021).
[2] D. P. Williams. The Mondrian detection algorithm for sonar imagery. IEEE Trans. Geosci. Remote Sens., 56, 1091-1102(2018).
[3] M. Zhao, Y. Qi, H. Wang. Optical interferometric MEMS accelerometers. Laser Photon. Rev., 18, 2300713(2023).
[4] F. Walter, D. Gräff, F. Lindner. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun., 11, 2436(2020).
[5] R. Ebert, P. Lutzmann, M. Hebel. Applications for remote laser vibration sensing. PhotonicsGlobal@Singapore, 1-5(2008).
[6] V. Puller, B. Lounis, F. Pistolesi. Single molecule detection of nanomechanical motion. Phys. Rev. Lett., 110, 125501(2013).
[7] J. D. Teufel, T. Donner, D. Li. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475, 359-363(2011).
[8] X. M. Henry Huang, C. A. Zorman, M. Mehregany. Nanodevice motion at microwave frequencies. Nature, 421, 496-496(2003).
[9] A. Ohlinger, A. Deak, A. A. Lutich. Optically trapped gold nanoparticle enables listening at the microscale. Phys. Rev. Lett., 108, 018101(2012).
[10] M. Xie, H. Liu, S. Wan. Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence. Nat. Commun., 13, 3330(2022).
[11] Y. Tian, P. Navarro, M. Orrit. Single molecule as a local acoustic detector for mechanical oscillators. Phys. Rev. Lett., 113, 135505(2014).
[12] H. I. Rasool, P. R. Wilkinson, A. Z. Stieg. A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy imaging in liquids. Rev. Sci. Instrum., 81, 023703(2010).
[13] T. Li, S. Kheifets, D. Medellin. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673-1675(2010).
[14] C. Zieger, A. Brutti, P. Svaizer. Acoustic based surveillance system for intrusion detection. 6th IEEE International Conference on Advanced Video and Signal Based Surveillance, 314-319(2009).
[15] M. Sammarco, M. Detyniecki. Car accident detection and reconstruction through sound analysis with Crashzam. Smart Cities, Green Technologies and Intelligent Transport Systems, 159-180(2018).
[16] Y. Zhang, G. Laput, C. Harrison. Vibrosight: long-range vibrometry for smart environment sensing. 31st Annual ACM Symposium on User Interface Software and Technology, 225-236(2018).
[17] G. Wang, Z. Pang, B. Zhang. Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link. Photon. Res., 10, 433-443(2022).
[18] A. Davis, M. Rubinstein, N. Wadhwa. The visual microphone: passive recovery of sound from video. ACM Trans. Graph., 33, 79(2014).
[19] R. Peng, B. Xu, G. Li. Long-range speech acquirement and enhancement with dual-point laser Doppler vibrometers. IEEE 23rd International Conference on Digital Signal Processing (DSP), 1-5(2018).
[20] T. Wang, Z. Zhu, A. Divakaran. Long range audio and audio-visual event detection using a laser Doppler vibrometer. Proc. SPIE, 7704, 77040J(2010).
[21] T.-S. Dinh Le, J. An, Y. Huang. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano, 13, 13293-13303(2019).
[22] S. Sami, Y. Dai, S. R. X. Tan. Spying with your robot vacuum cleaner: eavesdropping via lidar sensors. 18th Conference on Embedded Networked Sensor Systems, 354-367(2020).
[23] T. Lü, J. Guo, H.-Y. Zhang. Acquirement and enhancement of remote speech signals. Optoelectron Lett., 13, 275-278(2017).
[24] T. Lv, H.-Y. Zhang, C.-H. Yan. Double mode surveillance system based on remote audio/video signals acquisition. Appl. Acoust., 129, 316-321(2018).
[25] Z. Zhu, W. Li, G. Wolberg. Integrating LDV audio and IR video for remote multimodal surveillance. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)—Workshops, 10(2005).
[26] Y. Avargel, I. Cohen. Speech measurements using a laser Doppler vibrometer sensor: application to speech enhancement. Joint Workshop on Hands-free Speech Communication and Microphone Arrays, 109-114(2011).
[27] S. Donati. Developing self-mixing interferometry for instrumentation and measurements. Laser Photon. Rev., 6, 393-417(2012).
[28] Z. Xu, J. Li, S. Zhang. Remote eavesdropping at 200 meters distance based on laser feedback interferometry with single-photon sensitivity. Opt. Lasers Eng., 141, 106562(2021).
[29] E. Lacot, R. Day, F. Stoeckel. Coherent laser detection by frequency-shifted optical feedback. Phys. Rev. A, 64, 043815(2001).
[30] K. Zhu, H. Chen, S. Zhang. Frequency-shifted optical feedback measurement technologies using a solid-state microchip laser. Appl. Sci., 9, 109(2019).
[31] G. Wanner. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way. Nat. Phys., 15, 200-202(2019).
[32] Y. Gong, J. Luo, B. Wang. Concepts and status of Chinese space gravitational wave detection projects. Nat. Astron., 5, 881-889(2021).
[33] M. Dehne, M. Tröbs, G. Heinzel. Verification of polarising optics for the LISA optical bench. Opt. Express, 20, 27273-27287(2012).
[34] S. Basak, M. Gowda. mmSpy: spying phone calls using mmWave radars. IEEE Symposium on Security and Privacy, 1211-1228(2022).
[35] B. Nassi, Y. Pirutin, A. Shamir. Lamphone: real-time passive sound recovery from light bulb vibrations(2020).
[36] B. Nassi, Y. Pirutin, T. Galor. Glowworm attack: optical TEMPEST sound recovery via a device’s power indicator LED. 2021 ACM SIGSAC Conference on Computer and Communications Security, 1900-1914(2021).