[1] Chen G Y, Jiang D Y, Wang B et al. Research on deformation control of ultrasonic-assisted laser welding of 6061 aluminum alloy[J]. Laser Technology, 45, 541-547(2021).
[2] Li Y Q, Guo L Y, Jiang P et al. Experimental study on surface morphology changes of aluminum alloy using laser cleaning and optimization of process parameters[J]. Chinese Journal of Lasers, 48, 2202016(2021).
[3] Zhang X D, Chen W Z, Bao G et al. Improvement of weld quality using a weaving beam in laser welding[J]. Journal of Materials Science & Technology, 20, 633-636(2004).
[4] Wen P, Li Z X, Zhang S et al. Investigation on porosity, microstructures and performances of 6A01-T5 aluminum alloy joint by oscillating fiber laser-CMT hybrid welding[J]. Chinese Journal of Lasers, 47, 0802003(2020).
[5] Zheng H, Yang S, Lou S H et al. Knowledge-based integrated product design framework towards sustainable low-carbon manufacturing[J]. Advanced Engineering Informatics, 48, 101258(2021).
[6] Moglia F, Raspa A. New trends in laser beam welding how automotive applications are driving the future of laser technologies[J]. PhotonicsViews, 17, 26-29(2020).
[7] Chen G Y, Wang B, Mao S et al. Research on the “∞”-shaped laser scanning welding process for aluminum alloy[J]. Optics & Laser Technology, 115, 32-41(2019).
[8] Wang L, Gao M, Zeng X Y. Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy[J]. Science and Technology of Welding and Joining, 24, 334-341(2019).
[9] Jia S H, Jia J P, Jiao J K et al. Experimental and numerical studies on laser stir welding of carbon fiber reinforced thermal polymers/aluminum alloy[J]. Chinese Journal of Lasers, 46, 0702006(2019).
[10] Kim C, Kang M, Kang N. Solidification crack and morphology for laser weave welding of Al5 J32 alloy[J]. Science and Technology of Welding and Joining, 18, 57-61(2013).
[11] Kang M, Han H N, Kim C. Microstructure and solidification crack susceptibility of Al6014 molten alloy subjected to a spatially oscillated laser beam[J]. Materials, 11, 648(2018).
[12] Wang Z M, Oliveira J P, Zeng Z et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 111, 58-65(2019).
[13] Rizvi S A, Ali W. Optimization of welding parameters and microstructure and fracture mode characterization of GMA welding by using taguchi method on SS304H austenitic steel[J]. Mechanics and Mechanical Engineering, 22, 1121-1132(2018).
[14] Tao Y P. Optimization of CMT welding process parameters for 5A06 aluminum alloy ultra-thin plate based on orthogonal test[J]. Welding Technology, 48, 2, 34-36(2019).
[15] Duan C M, Cao H J, Li H C et al. Low-carbon optimization method of aluminum alloy laser welding process system based on carbon efficiency[J]. Computer Integrated Manufacturing Systems, 27, 1309-1318(2021).
[16] Jiang P, Wang C C, Zhou Q et al. Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-Ⅱ[J]. Advances in Engineering Software, 99, 147-160(2016).
[17] Lim N K[M]. Optimization of TIG weld geometry using a Kriging surrogate model and Latin Hypercube sampling for data generation(2014).
[18] Katherasan D, Elias J V, Sathiya P et al. Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm[J]. Journal of Intelligent Manufacturing, 25, 67-76(2014).
[19] Zhou Q, Jiang P, Shao X Y et al. Optimization of process parameters of hybrid laser–arc welding onto 316L using ensemble of metamodels[J]. Metallurgical and Materials Transactions B, 47, 2182-2196(2016).
[20] Deb K, Pratap A, Agarwal S et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 6, 182-197(2002).
[21] Zhao K, Liang X D, Wang W et al. Multi-objective optimization of coaxial powder feeding laser cladding based on NSGA-Ⅱ[J]. Chinese Journal of Lasers, 47, 0102004(2020).