• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1217001 (2023)
Lingyun Shao1, Qiang Li1, Xin Guan1,*, and Xuewen Ding2
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2Tianjin Fieldbus Control Technology Engineering Center, Tianjin Vocational and Technical Normal University, Tianjin 300222, China
  • show less
    DOI: 10.3788/LOP220759 Cite this Article Set citation alerts
    Lingyun Shao, Qiang Li, Xin Guan, Xuewen Ding. Disease Classification Algorithm of Chest X-Ray Based on Efficient Channel Attention[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1217001 Copy Citation Text show less
    Framework diagram of chest disease classification network
    Fig. 1. Framework diagram of chest disease classification network
    Structure of DECA
    Fig. 2. Structure of DECA
    5-layer dense connected block, each layer taking all the preceding feature-maps as input
    Fig. 3. 5-layer dense connected block, each layer taking all the preceding feature-maps as input
    Efficient channel attention module
    Fig. 4. Efficient channel attention module
    Schematic diagram of asymmetric convolution
    Fig. 5. Schematic diagram of asymmetric convolution
    X-ray images in Chest X-ray 15 dataset. (a) No finding; (b) pneumonia;(c) COVID-19; (d) cardiomegaly; (e) hernia; (f) infiltration;(g) nodule; (h) emphysema; (i) effusion; (j) pleural thickening; (k) pneumothorax; (l) mass; (m) fibrosis; (n) edema; (o) consolidation
    Fig. 6. X-ray images in Chest X-ray 15 dataset. (a) No finding; (b) pneumonia;(c) COVID-19; (d) cardiomegaly; (e) hernia; (f) infiltration;(g) nodule; (h) emphysema; (i) effusion; (j) pleural thickening; (k) pneumothorax; (l) mass; (m) fibrosis; (n) edema; (o) consolidation
    ROC curve and AUC value of proposed algorithm. (a) Atelectasis; (b) cardiomegaly; (c) effusion; (d) infiltration; (e) mass; (f) nodule; (g) pneumonia; (h) pneumothorax; (i) consolidation; (j) edema; (k) emphysema; (l) fibrosis; (m) pleural thickening: (n) hernia; (o) COVID-19
    Fig. 7. ROC curve and AUC value of proposed algorithm. (a) Atelectasis; (b) cardiomegaly; (c) effusion; (d) infiltration; (e) mass; (f) nodule; (g) pneumonia; (h) pneumothorax; (i) consolidation; (j) edema; (k) emphysema; (l) fibrosis; (m) pleural thickening: (n) hernia; (o) COVID-19
    LayerOutput sizeDECANet-121
    Convolution112×1127×7 Conv,stride 2
    Pooling56×563×3 max pool,stride 2
    DECA block 156×56GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×6
    Transition layer 156×561×1 Conv
    28×282×2 average pool,stride 2
    DECA block 228×28GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×12
    Transition layer 228×281×1 Conv
    14×142×2 average pool,stride 2
    DECA block 314×14GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×24
    Transition layer 314×141×1 Conv
    7×72×2 average pool,stride 2
    DECA block 47×7GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×16
    Classification layer1×17×7 global average pool,stride 2
    15 fully-connected
    Table 1. Specific structure of DECA-Net
    NetworkBackboneAverage AUC
    ResNet50ResNet500.7468
    ResNet50+SEResNet500.7642
    ResNet50+ECA DenseNet121

    ResNet50

    DenseNet121

    0.7886

    0.7952

    DenseNet121+SE10DenseNet1210.8014
    DECA-NetDenseNet1210.8245
    Table 2. Comparison of classification results of different classification network models on Chest X-ray 15
    DiseaseAlgorithm of reference[9Algorithm of reference[10Algorithm of reference[13Algorithm of reference[18Algorithm of reference[19Algorithm of reference[20Algorithm of reference[21Proposedalgorithm
    Atelectasis0.70030.76270.7850.7670.7830.7910.7850.8157
    Cardiomegaly0.810.88350.87660.8830.8840.8980.8870.8657
    Effusion0.75850.81590.86280.8280.8320.8730.8310.8701
    Infiltration0.66140.67860.6730.7090.7080.7000.7030.6948
    Mass0.69330.80120.8040.8210.8370.8320.8330.8350
    Nodule0.66870.72930.72990.7580.8000.7580.7980.7683
    Pneumonia0.6580.70970.74230.7310.7350.7670.7310.7548
    Pneumothorax0.79930.83770.84260.8460.8660.8590.8810.8687
    Consolidation0.70320.74430.78460.7450.7460.8000.7540.7952
    Edema0.80520.84140.87270.8350.8410.8890.8490.8647
    Emphysema0.8330.88360.8580.8950.9370.8910.9300.8942
    Fibrosis0.78590.80070.77540.8180.820.7890.8330.8141
    Pleural thickening0.68350.75360.75630.7610.7960.7710.7820.7872
    Hernia0.87170.87630.86450.8960.8950.8960.9210.9027
    Mean0.74510.79410.8020.8070.820.8220.8230.8237
    Table 3. Comparison of AUC value of different chest disease classification algorithms on Chest X-ray 14 dataset
    DiseaseNetwork_1Network_2Network_3Network_4DECA-Net
    Atelectasis0.78530.78380.79740.80730.8101
    Cardiomegaly0.87700.87020.88130.88770.8919
    Effusion0.85410.84980.86140.86890.8701
    Infiltration0.66960.67240.68450.69460.6892
    Mass0.81280.80900.83060.83020.8301
    Nodule0.7390.72440.75950.75340.7672
    Pneumonia0.72820.73550.74500.74120.7389
    Pneumothorax0.85460.86230.87430.88060.8829
    Consolidation0.78180.78490.79080.79750.7931
    Edema0.86330.88720.87260.88050.8782
    Emphysema0.87420.88290.89240.90230.9122
    Fibrosis0.77220.78920.78590.7960.8054
    Pleural thickening0.76070.77880.76270.77070.7851
    Hernia0.85710.90110.90040.86780.8893
    COVID-190.82650.81570.82730.83570.8239
    Mean0. 80380.80980.81770.82100.8245
    Table 4. Comparison of ablation experiment results
    Lingyun Shao, Qiang Li, Xin Guan, Xuewen Ding. Disease Classification Algorithm of Chest X-Ray Based on Efficient Channel Attention[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1217001
    Download Citation