[1] Thompson R. Pandemic potential of 2019-nCoV[J]. The Lancet: Infectious Diseases, 20, 280(2020).
[2] Song Y, Liu J. Improved U-net network for COVID-19 image segmentation[J]. Computer Engineering and Applications, 57, 243-251(2021).
[3] Li S X, Shan Y. Latest research advances on novel coronavirus pneumonia[J]. Journal of Shandong University (Health Sciences), 58, 19-25(2020).
[4] Khobragade S, Tiwari A, Patil C Y et al. Automatic detection of major lung diseases using Chest Radiographs and classification by feed-forward artificial neural network[C](2016).
[5] Chen W H, He J, Liu G. Convolutional neural networks for hyperspectral image classification with attention mechanism[J]. Laser & Optoelectronics Progress, 59, 1811001(2022).
[6] Hu J, Shen L, Albanie S et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).
[7] Li X, Wang W H, Hu X L et al. Selective kernel networks[C], 510-519(2019).
[8] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
[9] Wang X S, Peng Y F, Lu L et al. ChestX-Ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C], 3462-3471(2017).
[10] Ma Y B, Zhou Q H, Chen X S et al. Multi-attention network for thoracic disease classification and localization[C], 1378-1382(2019).
[12] Zhang Z R, Li Q, Guan X. Multilabel chest X-ray disease classification based on a dense squeeze-and-excitation network[J]. Journal of Image and Graphics, 25, 2238-2248(2020).
[13] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).
[14] Ding X H, Guo Y C, Ding G G et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C], 1911-1920(2019).
[15] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[16] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).
[18] Gündel S, Grbic S, Georgescu B et al. Learning to recognize abnormalities in chest X-rays with location-aware dense networks[M]. Vera-Rodriguez R, Fierrez J, Morales A. Progress in pattern recognition, image analysis, computer vision, and applications. Lecture notes in computer science, 11401, 757-765(2019).
[19] Guan Q J, Huang Y P, Luo Y W et al. Discriminative feature learning for thorax disease classification in chest X-ray images[J]. IEEE Transactions on Image Processing, 30, 2476-2487(2021).
[20] Teixeira V, Braz L, Pedrini H et al. DuaLAnet: dual lesion attention network for thoracic disease classification in chest X-rays[C], 69-74(2020).
[21] Chen B Z, Zhang Z, Lin J Y et al. Two-stream collaborative network for multi-label chest X-ray image classification with lung segmentation[J]. Pattern Recognition Letters, 135, 221-227(2020).