• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0228007 (2023)
Kun Zhang1, Yawei Zhu1, Xiaohong Wang1, Liting Zhang1, and Ruofei Zhong2,*
Author Affiliations
  • 1College of Information Science and Engineering, Hebei University of Science and Technology, Hebei 050018, Shijiazhuang, China
  • 2College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
  • show less
    DOI: 10.3788/LOP212825 Cite this Article Set citation alerts
    Kun Zhang, Yawei Zhu, Xiaohong Wang, Liting Zhang, Ruofei Zhong. Three-Dimensional Point Cloud Semantic Segmentation Network Based on Spatial Graph Convolution Network[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0228007 Copy Citation Text show less
    References

    [1] Yuan X C, Zayats A V. Laser: sixty years of advancement[J]. Advanced Photonics, 2, 050101(2020).

    [2] Fu X Y, Chen Z D, Han D D et al. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 8, 577-588(2020).

    [3] Qian Q S, Hu Y H, Zhao N X et al. Object tracking method based on joint global and local feature descriptor of 3D LIDAR point cloud[J]. Chinese Optics Letters, 18, 061001(2020).

    [4] Zhang J Z, Zhu C Y, Zheng L T et al. Fusion-aware point convolution for online semantic 3D scene segmentation[C], 4533-4542(2020).

    [5] Charles R Q, Hao S, Mo K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).

    [6] Charles R Q, Li Y, Hao S et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C](2017).

    [7] Zhang A W, Liu L L, Zhang X Z. Multi-feature 3D road point cloud semantic segmentation method based on convolutional neural network[J]. Chinese Journal of Lasers, 47, 0410001(2020).

    [8] Zhao L, Hu J, Liu H et al. Deep learning based on semantic segmentation for three-dimensional object detection from point clouds[J]. Chinese Journal of Lasers, 48, 1710004(2021).

    [9] Li Q Q, Hua X H, Zhao B F et al. New method for plane segmentation of indoor scene point cloud[J]. Chinese Journal of Lasers, 48, 1604002(2021).

    [10] Li G H, Mueller M, Qian G C et al. DeepGCNs: making GCNs go as deep as CNNs[EB/OL]. https://arxiv.org/abs/1910.06849

    [11] Kip F T N, Welling M. Semi-supervised classification with graph convolutional networks[C](2017).

    [12] Li R, Sheng W, Zhu F et al. Adaptive graph convolutional neural networks[C](2018).

    [13] Wu F, Zhang T, Souza A et al. Simplifying graph convolutional networks[C](2019).

    [14] Hou X D, Yu X X, Liu H P. 3D point cloud classification and segmentation model based on graph convolutional network[J]. Laser & Optoelectronics Progress, 57, 181019(2020).

    [15] Chiang W L, Liu X Q, Si S et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks[C], 257-266(2019).

    [16] Wang L, Huang Y C, Hou Y L et al. Graph attention convolution for point cloud semantic segmentation[C], 10288-10297(2019).

    [17] Xu K, Li C T, Tian Y L et al. Representation learning on graphs with jumping knowledge networks[EB/OL]. https://arxiv.org/abs/1806.03536

    [18] Wang W M, You Y, Liu W H et al. Point cloud classification with deep normalized Reeb graph convolution[J]. Image and Vision Computing, 106, 104092(2021).

    [19] Xiu H Y, Shinohara T, Matsuoka M. Dynamic-scale graph convolutional network for semantic segmentation of 3D point cloud[C], 271-2717(2019).

    [20] Wang Y, Sun Y B, Liu Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).

    [21] Xu Q G, Sun X D, Wu C Y et al. Grid-GCN for fast and scalable point cloud learning[C], 5660-5669(2020).

    Kun Zhang, Yawei Zhu, Xiaohong Wang, Liting Zhang, Ruofei Zhong. Three-Dimensional Point Cloud Semantic Segmentation Network Based on Spatial Graph Convolution Network[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0228007
    Download Citation