[1] S. Jeon, S.H. Park, E. Kim, J. Kim, S.W. Kim et al., A magnetically powered stem cell based microrobot for minimally invasive stem cell delivery via the intranasal pathway in a mouse brain. Adv. Healthc. Mater. 10(19), 2100801 (2021).
[2] J. Giltinan, V. Sridhar, U. Bozuyuk, D. Sheehan, M. Sitti, 3D microprinting of iron platinum nanoparticle-based magnetic mobile microrobots. Adv. Intell. Syst. 3(1), 2000204 (2021).
[3] J. Vyskocil, C.C. Mayorga-Martinez, E. Jablonska, F. Novotny, T. Ruml et al., Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano 14(7), 8247–8256 (2020).
[4] S. Fusco, H.-W. Huang, K.E. Peyer, C. Peters, M. Häberli et al., Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 7(12), 6803–6811 (2015).
[5] C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11(1), 5618 (2020).
[6] J. Li, H. Shen, H. Zhou, R. Shi, C. Wu et al., Antimicrobial micro/nanorobotic materials design: from passive combat to active therapy. Mater. Sci. Eng. R Rep. 152, 100712 (2023).
[7] M. Ussia, M. Urso, M. Kratochvilova, J. Navratil, J. Balvan et al., Magnetically driven self degrading zinc containing cystine microrobots for treatment of prostate cancer. Small 19(17), 2208259 (2023).
[8] X. Hu, N. Wang, X. Guo, Z. Liang, H. Sun et al., A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-micro Lett. 14, 101 (2022).
[9] J. Wang, R. Dong, H. Wu, Y. Cai, B. Ren, A review on artificial micro/nanomotors for cancer targeted delivery, diagnosis, and therapy. Nano-micro Lett. 12, 11 (2020).
[10] L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-micro Lett. 15, 141 (2023).
[11] X. Wang, X.H. Qin, C. Hu, A. Terzopoulou, X.Z. Chen et al., 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28(45), 1804107 (2018).
[12] S. Noh, S. Jeon, E. Kim, U. Oh, D. Park et al., A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small 18(25), 2107888 (2022).
[13] A. Terzopoulou, X. Wang, X.Z. Chen, M. Palacios Corella, C. Pujante et al., Biodegradable metal organic framework based microrobots (MOFBOTS). Adv. Healthc. Mater. 9(20), 2001031 (2020).
[14] T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang et al., Development of magnet driven and image guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 16(41), 1906908 (2020).
[15] P. TirgarBahnamiri, S. Bagheri-Khoulenjani, Biodegradable microrobots for targeting cell delivery. Med. Hypothses 102, 56–60 (2017).
[16] S. Fusco, F. Ullrich, J. Pokki, G. Chatzipirpiridis, B. Özkale et al., Microrobots: a new era in ocular drug delivery. Expert Opin. Drug Deliv. 11(11), 1815–1826 (2014).
[17] S. Kim, S. Lee, J. Lee, B.J. Nelson, L. Zhang et al., Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci. Rep. 6(1), 30713 (2016).
[18] J.-Y. Kim, S. Jeon, J. Lee, S. Lee, J. Lee et al., A simple and rapid fabrication method for biodegradable drug-encapsulating microrobots using laser micromachining, and characterization thereof. Sens. Actuators B Chem. 266, 276–287 (2018).
[19] S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, S. Seyfi, M. Sitti et al., 3D-printed microrobots from design to translation. Nat. Commun. 13(1), 5875 (2022).
[20] Q. Chen, N. Wang, M. Zhu, J. Lu, H. Zhong et al., TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol. 15, 266–276 (2018).
[21] E.M. Higbee-Dempsey, A. Amirshaghaghi, M.J. Case, M. Bouché, J. Kim et al., Biodegradable gold nanoclusters with improved excretion due to pH-triggered hydrophobic to hydrophilic transition. J. Am. Chem. Soc. 142(17), 7783–7794 (2020).
[22] H.-J. Liu, M. Wang, S. Shi, X. Hu, P. Xu, A therapeutic sheep in metastatic wolf’s clothing: Trojan horse approach for cancer brain metastases treatment. Nano-micro Lett. 14(1), 114 (2022).
[23] J. Park, C. Jin, S. Lee, J.Y. Kim, H. Choi, Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 8(16), 1900213 (2019).
[24] T. Wei, J. Li, L. Zheng, C. Wang, F. Li et al., Development of a cell loading microrobot with simultaneously improved degradability and mechanical strength for performing in vivo delivery tasks. Adv. Intell. Syst. 3(11), 2100052 (2021).
[25] J.-M. Lü, X. Wang, C. Marin-Muller, H. Wang, P.H. Lin et al., Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 9(4), 325–341 (2009).
[26] Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications. Nano-micro Lett. 11, 46 (2019).
[27] S. Jin, X. Xia, J. Huang, C. Yuan, Y. Zuo et al., Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 127, 56–79 (2021).
[28] E.J. Go, E.Y. Kang, S.K. Lee, S. Park, J.H. Kim et al., An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg (OH)2 to improve in vivo bone regeneration. Biomater. Sci. 8(3), 937–948 (2020).
[29] S.Y. Choi, W. Hur, B.K. Kim, C. Shasteen, M.H. Kim et al., Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly (lactic-co-glycolic acid). J. Biomed. Mater. Res. B Appl. Biomater. 103(3), 596–607 (2015).
[30] A. Srivastava, N. Bhatnagar, Production and characterisation of new bioresorbable radiopaque Mg–Zn–Y alloy to improve X-ray visibility of polymeric scaffolds. J. Magnes. Alloy 10(6), 1694–1703 (2022).
[31] C. Chen, E. Karshalev, J. Guan, J. Wang, Magnesium based micromotors: water powered propulsion, multifunctionality, and biomedical and environmental applications. Small 14(23), 1704252 (2018).
[32] W. Gao, A. Pei, J. Wang, Water-driven micromotors. ACS Nano 6(9), 8432–8438 (2012).
[33] M. You, C. Chen, L. Xu, F. Mou, J. Guan, Intelligent micro/nanomotors with taxis. Acc. Chem. Res. 51(12), 3006–3014 (2018).
[34] X.Z. Chen, B. Jang, D. Ahmed, C. Hu, C. De Marco et al., Small scale machines driven by external power sources. Adv. Mater. 30(15), 1705061 (2018).
[35] V. Agrahari, V. Agrahari, M.-L. Chou, C.H. Chew, J. Noll et al., Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: promising development opportunities and translational challenges. Biomaterials 260, 120163 (2020).
[36] S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12(1), 396–401 (2012).
[37] S. Shivalkar, P.K. Gautam, A. Verma, K. Maurya, M.P. Sk et al., Autonomous magnetic microbots for environmental remediation developed by organic waste derived carbon dots. J. Environ. Manag. 297, 113322 (2021).
[38] T. Maric, M.Z.M. Nasir, N.F. Rosli, M. Budanović, R.D. Webster et al., Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier. Adv. Funct. Mater. 30(19), 2000112 (2020).
[39] Y. Zhang, K. Yan, F. Ji, L. Zhang, Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Adv. Funct. Mater. 28(52), 1806340 (2018).
[40] R. Maria-Hormigos, C.C. Mayorga-Martinez, M. Pumera, Soft magnetic microrobots for photoactive pollutant removal. Small Methods 7(1), 2201014 (2023).
[41] B. Jurado-Sánchez, J. Wang, Micromotors for environmental applications: a review. Environ. Sci. Nano 5(7), 1530–1544 (2018).
[42] J.G.S. Moo, M. Pumera, Chemical energy powered nano/micro/macromotors and the environment. Chem. Eur. J. 21(1), 58–72 (2015).
[43] M. Guix, J. Orozco, M. Garcia, W. Gao, S. Sattayasamitsathit et al., Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6(5), 4445–4451 (2012).
[44] F. Mou, D. Pan, C. Chen, Y. Gao, L. Xu et al., Magnetically modulated pot-like MnFe2O4 micromotors: nanoparticle assembly fabrication and their capability for direct oil removal. Adv. Funct. Mater. 25(39), 6173–6181 (2015).
[45] J. Orozco, G. Pan, S. Sattayasamitsathit, M. Galarnyk, J. Wang, Micromotors to capture and destroy anthrax simulant spores. Analyst 140(5), 1421–1427 (2015).
[46] L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013).
[47] J. Parmar, D. Vilela, E. Pellicer, D. Esqué-de los Ojos, J. Sort et al., Reusable and long-lasting active microcleaners for heterogeneous water remediation. Adv. Funct. Mater. 26(23), 4152–4161 (2016).
[48] B. Jurado-Sánchez, S. Sattayasamitsathit, W. Gao, L. Santos, Y. Fedorak et al., Self-propelled activated carbon Janus micromotors for efficient water purification. Small 11(4), 499–506 (2015).
[49] L. Dąbek, A. Picheta-Oleś, B. Szeląg, J. Szulżyk-Cieplak, G. Łagód, Modeling and optimization of pollutants removal during simultaneous adsorption onto activated carbon with advanced oxidation in aqueous environment. Materials 13(19), 4220 (2020).
[50] W. Gao, X. Feng, A. Pei, Y. Gu, J. Li et al., Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5(11), 4696–4700 (2013).
[51] D. Liu, T. Wang, Y. Lu, Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv. Healthc. Mater. 11(3), 2102253 (2022).
[52] X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang et al., A real-time wearable UV-radiation monitor based on a high-performance p-CuZns/n-TiO2 photodetector. Adv. Mater. 30(43), 1803165 (2018).
[53] A.M. Vargason, A.C. Anselmo, S. Mitragotri, The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5(9), 951–967 (2021).
[54] M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan et al., Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE Inst. Electr. Electron Eng. 103(2), 205–224 (2015).
[55] S. Gervasoni, J. Lussi, S. Viviani, Q. Boehler, N. Ochsenbein et al., Magnetically assisted robotic fetal surgery for the treatment of spina bifida. IEEE Trans. Med. Robot. Bionics 4(1), 85–93 (2022).
[56] F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403 (2021).
[57] G. Katsikis, J.F. Collis, S.M. Knudsen, V. Agache, J.E. Sader et al., Inertial and viscous flywheel sensing of nanoparticles. Nat. Commun. 12(1), 5099 (2021).
[58] M. Xie, W. Zhang, C. Fan, C. Wu, Q. Feng et al., Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv. Mater. 32(26), 2000366 (2020).
[59] M.A. López, J. Prieto, J.E. Traver, I. Tejado, B.M. Vinagre et al., Testing non reciprocal motion of a swimming flexible small robot with single actuation, in 2018 19th International Carpathian Control Conference (ICCC) (2018), pp. 312–317.
[60] S.R. Goudu, I.C. Yasa, X. Hu, H. Ceylan, W. Hu et al., Biodegradable untethered magnetic hydrogel milli-grippers. Adv. Funct. Mater. 30(50), 2004975 (2020).
[61] K.E. Peyer, L. Zhang, B.J. Nelson, Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4), 1259–1272 (2013).
[62] S. Fusco, M.S. Sakar, S. Kennedy, C. Peters, S. Pane et al., Self-folding mobile microrobots for biomedical applications, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 3777–3782.
[63] H. Kim, J. Ali, U.K. Cheang, J. Jeong, J.S. Kim et al., Micro manipulation using magnetic microrobots. J. Bionic Eng. 13(4), 515–524 (2016).
[64] S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), eaav4317 (2019).
[65] M. Dong, X. Wang, X.Z. Chen, F. Mushtaq, S. Deng et al., 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv. Funct. Mater. 30(17), 1910323 (2020).
[66] F. Qiu, B.J. Nelson, Magnetic helical micro-and nanorobots: toward their biomedical applications. Engineering 1(1), 21–26 (2015).
[67] M.A. Zeeshan, R. Grisch, E. Pellicer, K.M. Sivaraman, K.E. Peyer et al., Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small 10(7), 1284–1288 (2014).
[68] R. Venezian, I.S. Khalil, Understanding robustness of magnetically driven helical propulsion in viscous fluids using sensitivity analysis. Adv. Theory Simul. 5(4), 2100519 (2022).
[69] Y. Liu, Y. Yang, X. Yang, L. Yang, Y. Shen et al., Multi-functionalized micro-helical capsule robots with superior loading and releasing capabilities. J. Mater. Chem. B 9(5), 1441–1451 (2021).
[70] K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19(1), 28–38 (2013).
[71] S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon et al., Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25(41), 5863–5868 (2013).
[72] Y. Jia, P. Liao, Y. Wang, D. Sun, Magnet-driven microwalker in surface motion based on frictional anisotropy. Adv. Intell. Syst. 4(11), 2200118 (2022).
[73] K. Villa, M. Pumera, Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem. Soc. Rev. 48(19), 4966–4978 (2019).
[74] L. Wang, A. Kaeer, D. Fischer, J. Simmchen, Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS A. Mater. Interfaces 11(36), 32937–32944 (2019).
[75] L. Kong, C.C. Mayorga-Martinez, J. Guan, M. Pumera, Photocatalytic micromotors activated by UV to visible light for environmental remediation, micropumps, reversible assembly, transportation, and biomimicry. Small 16(27), 1903179 (2020).
[76] J. Kim, S. Jo, W.-J. Lee, J. Lim, T.S. Lee, Moving photocatalyst of a titanium dioxide-based micromotor asymmetrically decorated with conjugated polymer dots. Mater. Des. 219, 110743 (2022).
[77] R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10(1), 839–844 (2016).
[78] R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren et al., Visible-light-driven BiOI-based Janus micromotor in pure water. J. Am. Chem. Soc. 139(5), 1722–1725 (2017).
[79] É. O’Neel-Judy, D. Nicholls, J. Castañeda, J.G. Gibbs, Light-activated, multi-semiconductor hybrid microswimmers. Small 14(32), 1801860 (2018).
[80] B. Jang, A. Hong, H.E. Kang, C. Alcantara, S. Charreyron et al., Multiwavelength light-responsive Au/B-TiO2 Janus micromotors. ACS Nano 11(6), 6146–6154 (2017).
[81] Y. Wu, R. Dong, Q. Zhang, B. Ren, Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus micromotors. Nano-micro Lett. 9, 12 (2017).
[82] J. Vrba, C. Maslen, J. Maxova, J. Duras, I. Rehor et al., An automated platform for assembling light-powered hydrogel microrobots and their subsequent chemical binding. J. Comput. Sci. 55, 101446 (2021).
[83] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[84] Y.V. Kaneti, C. Chen, M. Liu, X. Wang, J.L. Yang et al., Carbon-coated gold nanorods: a facile route to biocompatible materials for photothermal applications. ACS A. Mater. Interfaces 7(46), 25658–25668 (2015).
[85] J. Nam, N. Won, H. Jin, H. Chung, S. Kim, pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[86] W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6(7), 6122–6132 (2012).
[87] D. Kagan, M.J. Benchimol, J.C. Claussen, E. Chuluun-Erdene, S. Esener et al., Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51(30), 7519–7522 (2012).
[88] R. Myers, C. Coviello, P. Erbs, J. Foloppe, C. Rowe et al., Polymeric cups for cavitation-mediated delivery of oncolytic vaccinia virus. Mol. Ther. 24(9), 1627–1633 (2016).
[89] J.J. Kwan, R. Myers, C.M. Coviello, S.M. Graham, A.R. Shah et al., Ultrasound-propelled nanocups for drug delivery. Small 11(39), 5305–5314 (2015).
[90] Y. Zhang, S. Li, The secondary bjerknes force between two gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 29, 129–145 (2016).
[91] N.F. Laubli, M.S. Gerlt, A. Wuthrich, R.T. Lewis, N. Shamsudhin et al., Embedded microbubbles for acoustic manipulation of single cells and microfluidic applications. Anal. Chem. 93(28), 9760–9770 (2021).
[92] A. Aghakhani, A. Pena-Francesch, U. Bozuyuk, H. Cetin, P. Wrede et al., High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8(10), eabm5126 (2022).
[93] J. Li, I. Rozen, J. Wang, Rocket science at the nanoscale. ACS Nano 10(6), 5619–5634 (2016).
[94] W.Z. Teo, H. Wang, M. Pumera, Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chem. Commun. 52(23), 4333–4336 (2016).
[95] J.R. Baylis, A.E.S. John, X. Wang, E.B. Lim, M.L. Statz et al., Self-propelled dressings containing thrombin and tranexamic acid improve short-term survival in a swine model of lethal junctional hemorrhage. Shock 46(3), 123–128 (2016).
[96] J. Li, V.V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann et al., Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8(11), 11118–11125 (2014).
[97] W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.St. Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[98] G. Zhao, M. Viehrig, M. Pumera, Challenges of the movement of catalytic micromotors in blood. Lab Chip 13(10), 1930–1936 (2013).
[99] M. Safdar, S.U. Khan, J. Jänis, Progress toward catalytic micro-and nanomotors for biomedical and environmental applications. Adv. Mater. 30(24), 1703660 (2018).
[100] K.K. Dey, A. Sen, Chemically propelled molecules and machines. J. Am. Chem. Soc. 139(23), 7666–7676 (2017).
[101] S. Wang, N. Wu, Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30(12), 3477–3486 (2014).
[102] W. Gao, S. Sattayasamitsathit, A. Uygun, A. Pei, A. Ponedal et al., Polymer-based tubular microbots: role of composition and preparation. Nanoscale 4(7), 2447–2453 (2012).
[103] A. Martín, B. Jurado-Sánchez, A. Escarpa, J. Wang, Template electrosynthesis of high-performance graphene microengines. Small 11(29), 3568–3574 (2015).
[104] D. Vilela, A.C. Hortelão, R. Balderas-Xicohténcatl, M. Hirscher, K. Hahn et al., Facile fabrication of mesoporous silica micro-jets with multi-functionalities. Nanoscale 9(37), 13990–13997 (2017).
[105] A. Paryab, H.R.M. Hosseini, F. Abedini, A. Dabbagh, Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation. New J. Chem. 44(17), 6947–6957 (2020).
[106] W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133(31), 11862–11864 (2011).
[107] W. Gao, A. Pei, R. Dong, J. Wang, Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136(6), 2276–2279 (2014).
[108] S.K. Srivastava, M. Guix, O.G. Schmidt, Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 16(1), 817–821 (2016).
[109] S.-J. Song, C.C. Mayorga-Martinez, D. Huska, M. Pumera, Engineered magnetic plant biobots for nerve agent removal. NPG Asia Mater. 14(1), 79 (2022).
[110] K. Han, C.W. Shields IV., O.D. Velev, Engineering of self-propelling microbots and microdevices powered by magnetic and electric fields. Adv. Funct. Mater. 28(25), 1705953 (2018).
[111] M.Z. Bazant, T.M. Squires, Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92(6), 066101 (2004).
[112] L. Huang, Y. Pan, M. Wang, L. Ren, Driving modes and characteristics of biomedical micro-robots. Eng. Regen. 4(4), 411–426 (2023).
[113] W. Gao, K.M. Manesh, J. Hua, S. Sattayasamitsathit, J. Wang, Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7(14), 2047–2051 (2011).
[114] C. Chen, S. Tang, H. Teymourian, E. Karshalev, F. Zhang et al., Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes. Angew. Chem. 130(27), 8242–8246 (2018).
[115] J. Li, T. Li, T. Xu, M. Kiristi, W. Liu et al., Magneto-acoustic hybrid nanomotor. Nano Lett. 15(7), 4814–4821 (2015).
[116] Y. Alapan, O. Yasa, B. Yigit, I.C. Yasa, P. Erkoc et al., Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019).
[117] X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017).
[118] J. Xing, T. Yin, S. Li, T. Xu, A. Ma et al., Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv. Funct. Mater. 31(11), 2008262 (2021).
[119] X. Yan, Q. Zhou, J. Yu, T. Xu, Y. Deng et al., Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv. Funct. Mater. 25(33), 5333–5342 (2015).
[120] X. Yan, J. Xu, Q. Zhou, D. Jin, C.I. Vong et al., Molecular cargo delivery using multicellular magnetic microswimmers. A. Mater. Today 15, 242–251 (2019).
[121] B.-W. Park, J. Zhuang, O. Yasa, M. Sitti, Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11(9), 8910–8923 (2017).
[122] Y. Alapan, O. Yasa, O. Schauer, J. Giltinan, A.F. Tabak et al., Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3(17), eaar4423 (2018).
[123] K. Hou, Y. Zhang, M. Bao, C. Xin, Z. Wei et al., A multifunctional magnetic red blood cell-mimetic micromotor for drug delivery and image-guided therapy. ACS A. Mater. Interfaces 14(3), 3825–3837 (2022).
[124] X. He, H. Nie, K. Wang, W. Tan, X. Wu et al., In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem. 80(24), 9597–9603 (2008).
[125] V. Gómez-Vallejo, M. Puigivila, S. Plaza-García, B. Szczupak, R. Piñol et al., PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale 10(29), 14153–14164 (2018).
[126] R. Weissleder, D.D. Stark, B.L. Engelstad, B.R. Bacon, C.C. Compton et al., Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am. J. Roentgenol. 152(1), 167–173 (1989).
[127] J.W. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable et al., Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19(12), 1141–1147 (2001).
[128] M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem. Rev. 112(4), 2323–2338 (2012).
[129] J.M. Veranth, E.G. Kaser, M.M. Veranth, M. Koch, G.S. Yost, Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part. Fibre Toxicol. 4(2), 1–18 (2007).
[130] H. Ceylan, I.C. Yasa, O. Yasa, A.F. Tabak, J. Giltinan et al., 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13(3), 3353–3362 (2019).
[131] B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B: Polym. Phys. 49(12), 832–864 (2011).
[132] T.S. Santra, Microfluidics and Bio-mems: Devices and applications (CRC Press, 2020), pp. 95–148
[133] S.-L. Ding, X. Liu, X.-Y. Zhao, K.-T. Wang, W. Xiong et al., Microcarriers in aication for cartilage tissue engineering: recent progress and challenges. Bioact. Mater. 17, 81–108 (2022).
[134] B.S. Zolnik, D.J. Burgess, Effect of acidic pH on PLGA microsphere degradation and release. J. Controll. Release 122(3), 338–344 (2007).
[135] Y. Li, J. Wu, H. Oku, G. Ma, Polymer-modified micromotors with biomedical applications: promotion of functionalization. Adv. Nanobiomed. Res. 2(10), 2200074 (2022).
[136] G. Go, A. Yoo, H.-W. Song, H.-K. Min, S. Zheng et al., Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano 15(1), 1059–1076 (2020).
[137] Z. Li, M. Leung, R. Hopper, R. Ellenbogen, M. Zhang, Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31(3), 404–412 (2010).
[138] H. Ge, X. Chen, W. Liu, X. Lu, Z. Gu, Metal-based transient micromotors: from principle to environmental and biomedical applications. Chem. Asian J. 14(14), 2348–2356 (2019).
[139] A. Nourhani, E. Karshalev, F. Soto, J. Wang, Multigear bubble propulsion of transient micromotors. Research 2020, 7823615 (2020).
[140] C. Chen, E. Karshalev, J. Li, F. Soto, R. Castillo et al., Transient micromotors that disappear when no longer needed. ACS Nano 10(11), 10389–10396 (2016).
[141] C.C. Alcântara, S. Kim, S. Lee, B. Jang, P. Thakolkaran et al., 3D fabrication of fully iron magnetic microrobots. Small 15(16), 1805006 (2019).
[142] E. Karshalev, B. Esteban-Fernández de Ávila, M. Beltran-Gastelum, P. Angsantikul, S. Tang et al., Micromotor pills as a dynamic oral delivery platform. ACS Nano 12(8), 8397–8405 (2018).
[143] Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019).
[144] B.E.-F. de Ávila, P. Angsantikul, J. Li, M. Angel Lopez-Ramirez, D.E. Ramírez-Herrera et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8(1), 272 (2017).
[145] F. Mou, C. Chen, Q. Zhong, Y. Yin, H. Ma et al., Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (n-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS A. Mater. Interfaces 6(12), 9897–9903 (2014).
[146] T. Maric, S. Atladóttir, L.H.E. Thamdrup, O. Ilchenko, M. Ghavami et al., Self-propelled Janus micromotors for pH-responsive release of small molecule drug. A. Mater. Today 27, 101418 (2022).
[147] K. Liu, J. Ou, S. Wang, J. Gao, L. Liu et al., Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. A. Mater. Today 20, 100694 (2020).
[148] Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and aication. Nano-micro Lett. 15(1), 20 (2023).
[149] A. Serrà, J. García-Torres, Electrochemistry: a basic and powerful tool for micro-and nanomotor fabrication and characterization. A. Mater. Today 22, 100939 (2021).
[150] D. Vilela, M.M. Stanton, J. Parmar, S. Sánchez, Microbots decorated with silver nanoparticles kill bacteria in aqueous media. ACS A. Mater. Interfaces 9(27), 22093–22100 (2017).
[151] G. Song, A. Atrens, Understanding magnesium corrosion-a framework for improved alloy performance. Adv. Eng. Mater. 5(12), 837–858 (2003).
[152] F. Mou, C. Chen, H. Ma, Y. Yin, Q. Wu et al., Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic properties. Angew. Chem. Int. Ed. 52(28), 7208–7212 (2013).
[153] L. Kong, N. Rohaizad, M.Z.M. Nasir, J. Guan, M. Pumera, Micromotor-assisted human serum glucose biosensing. Anal. Chem. 91(9), 5660–5666 (2019).
[154] S. Dutta, K.B. Devi, M. Roy, Processing and degradation behavior of porous magnesium scaffold for biomedical applications. Adv. Powder Technol. 28(12), 3204–3212 (2017).
[155] J.M. Seitz, R. Eifler, F.W. Bach, H. Maier, Magnesium degradation products: effects on tissue and human metabolism. J. Biomed. Mater. Res. A 102(10), 3744–3753 (2014).
[156] Y. Xin, K. Huo, H. Tao, G. Tang, P.K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 4(6), 2008 (2008).
[157] S. Kovacevic, W. Ali, E. Martínez-Pañeda, J. Llorca, Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications. Acta Biomater. 164, 641–658 (2023).
[158] M. Wątroba, K. Mech, W. Bednarczyk, J. Kawałko, M. Marciszko-Wiąckowska et al., Long-term in vitro corrosion behavior of Zn–3Ag and Zn–3Ag–0.5 Mg alloys considered for biodegradable implant applications. Mater. Des. 213, 110289 (2022).
[159] X. Liu, H. Yang, Y. Liu, P. Xiong, H. Guo et al., Comparative studies on degradation behavior of pure zinc in various simulated body fluids. JOM 71, 1414–1425 (2019).
[160] V.M. Rabeeh, S.A. Rahim, S. Kinattingara Parambath, G. Rajanikant, T. Hanas, Iron-gold composites for biodegradable implants: In vitro investigation on biodegradation and biomineralization. ACS Biomater. Sci. Eng. 9(7), 4255–4268 (2023).
[161] H. Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani, Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 6(5), 1852–1860 (2010).
[162] M. Schinhammer, P. Steiger, F. Moszner, J.F. Löffler, P.J. Uggowitzer, Degradation performance of biodegradable FeMnC (Pd) alloys. Mater. Sci. Eng. C 33(4), 1882–1893 (2013).
[163] S.S. Prasad, S. Prasad, K. Verma, R.K. Mishra, V. Kumar et al., The role and significance of magnesium in modern day research-a review. J. Magnes. Alloy 10(1), 1–61 (2022).
[164] Y. Li, Y. Wang, Z. Shen, F. Miao, J. Wang et al., A biodegradable magnesium alloy vascular stent structure: design, optimisation and evaluation. Acta Biomater. 142, 402–412 (2022).
[165] D.E. Erişen, Y. Zhang, B. Zhang, K. Yang, S. Chen et al., Biosafety and biodegradation studies of AZ31B magnesium alloy carotid artery stent in vitro and in vivo. J. Biomed. Mater. Res. B A. Biomater. 110(1), 239–248 (2022).
[166] Z.-Q. Zhang, Y.-X. Yang, J.-A. Li, R.-C. Zeng, S.-K. Guan, Advances in coatings on magnesium alloys for cardiovascular stents—a review. Bioact. Mater. 6(12), 4729–4757 (2021).
[167] Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10(11), 4561–4573 (2014).
[168] N. Hort, Y.-D. Huang, D. Fechner, M. Störmer, C. Blawert et al., Magnesium alloys as implant materials-principles of property design for Mg–RE alloys. Acta Biomater. 6(5), 1714–1725 (2010).
[169] G. Wu, J.M. Ibrahim, P.K. Chu, Surface design of biodegradable magnesium alloys-a review. Surf. Coat. Technol. 233, 2–12 (2013).
[170] M. Nasr Azadani, A. Zahedi, O.K. Bowoto, B.I. Oladapo, A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 11(1), 1–26 (2022).
[171] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728–1734 (2006).
[172] G. Uppal, A. Thakur, A. Chauhan, S. Bala, Magnesium based implants for functional bone tissue regeneration-a review. J. Magnes. Alloy 10(2), 356–386 (2022).
[173] S. Siefen, M. Höck, Development of magnesium implants by aication of conjoint-based quality function deployment. J. Biomed. Mater. Res. A 107(12), 2814–2834 (2019).
[174] D. Bairagi, S. Mandal, A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects. J. Magnes. Alloy 10(3), 627–669 (2022).
[175] M.E. Maguire, J.A. Cowan, Magnesium chemistry and biochemistry. Biometals 15, 203–210 (2002).
[176] A. Hartwig, Role of magnesium in genomic stability. Mutat. Res. Fundam. Mol. Mech. Mutag. 475(1–2), 113–121 (2001).
[177] C. Theisen, K. Wodschow, B. Hansen, J. Schullehner, G. Gislason et al., Drinking water magnesium and cardiovascular mortality: a cohort study in denmark, 2005–2016. Environ. Int. 164, 107277 (2022).
[178] K.P. Schlingmann, M. Konrad, Magnesium Homeostasis (Elsevier, Amsteram, 2020), pp. 509–525
[179] I. Groenendijk, M. van Delft, P. Versloot, L.J. van Loon, L.C. de Groot, Impact of magnesium on bone health in older adults: a systematic review and meta-analysis. Bone 154, 116233 (2022).
[180] X. Fang, K. Wang, D. Han, X. He, J. Wei et al., Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies. BMC Med. 14(1), 1–13 (2016).
[181] D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9(1), 1410 (2018).
[182] K.S. Soppimath, A.R. Kulkarni, W.E. Rudzinski, T.M. Aminabhavi, Microspheres as floating drug-delivery systems to increase gastric retention of drugs. Drug Metab. Rev. 33(2), 149–160 (2001).
[183] Z. Luo, N. Paunović, J.-C. Leroux, Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv. Drug Deliv. Rev. 175, 113814 (2021).
[184] J.-Y. Runser, M. Criado-Gonzalez, F. Fneich, M. Rabineau, B. Senger et al., Non-monotonous enzyme-assisted self-assembly profiles resulting from reaction-diffusion processes in host gels. J. Colloid Interface Sci. 620, 234–241 (2022).
[185] P.J. Schouten, D. Soto-Aguilar, A. Aldalbahi, T. Ahamad, S. Alzahly et al., Design of sporopollenin-based functional ingredients for gastrointestinal tract targeted delivery. Curr. Opin. Food Sci. 44, 100809 (2022).
[186] Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang et al., Dual-fuel-driven bactericidal micromotor. Nano-micro Lett. 8(2), 157–164 (2016).
[187] N.R. Salama, M.L. Hartung, A. Müller, Life in the human stomach: persistence strategies of the bacterial pathogen helicobacter pylori. Nat. Rev. Microbiol. 11(6), 385–399 (2013).
[188] D. Bravo, A. Hoare, C. Soto, M.A. Valenzuela, A.F. Quest, Helicobacter pylori in human health and disease: mechanisms for local gastric and systemic effects. World J. Gastroenterol. 24(28), 3071 (2018).
[189] G. Holtmann, C. Cain, P. Malfertheiner, Gastric helicobacter pylori infection accelerates healing of reflux esophagitis during treatment with the proton pump inhibitor pantoprazole. Gastroenterology 117(1), 11–16 (1999).
[190] S. Kuang, J. Xu, M. Chen, Y. Zhang, F. Shi et al., The influence of pretreatment with PPI on helicobacter pylori eradication: a systematic review and meta-analysis. Medicine 100(47), e27944 (2021).
[191] P. Moayyedi, G.I. Leontiadis, The risks of PPI therapy. Nat. Rev. Gastroenterol. Hepatol. 9(3), 132–139 (2012).
[192] P.M. Ho, T.M. Maddox, L. Wang, S.D. Fihn, R.L. Jesse et al., Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301(9), 937–944 (2009).
[193] A. Koyyada, Long-term use of proton pump inhibitors as a risk factor for various adverse manifestations. Therapies 76(1), 13–21 (2021).
[194] E. Sheen, G. Triadafilopoulos, Adverse effects of long-term proton pump inhibitor therapy. Dig. Dis. Sci. 56, 931–950 (2011).
[195] J. Li, S. Thamphiwatana, W. Liu, B. Esteban-Fernández de Ávila, P. Angsantikul et al., Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10(10), 9536–9542 (2016).
[196] X. Wei, M. Beltrán-Gastélum, E. Karshalev, B. Esteban-Fernández de Ávila, J. Zhou et al., Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 19(3), 1914–1921 (2019).
[197] V. Dias, E. Junn, M.M. Mouradian, The role of oxidative stress in parkinson’s disease. J. Parkinsons Dis. 3(4), 461–491 (2013).
[198] S. Bhatt, L. Puli, C.R. Patil, Role of reactive oxygen species in the progression of alzheimer’s disease. Drug Discov. Today 26(3), 794–803 (2021).
[199] C.S. Carter, S.C. Huang, C.C. Searby, B. Cassaidy, M.J. Miller et al., Exposure to static magnetic and electric fields treats type 2 diabetes. Cell Metab. 32(4), 561–574.e567 (2020).
[200] B. Perillo, M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli et al., ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52(2), 192–203 (2020).
[201] X. Lou, Z. Chen, Z. He, M. Sun, J. Sun, Bacteria-mediated synergistic cancer therapy: small microbiome has a big hope. Nano-micro Lett. 13(1), 37 (2021).
[202] G. Zhou, E. Goshi, Q. He, Micro/nanomaterials-augmented hydrogen therapy. Adv. Healthc. Mater. 8(16), 1900463 (2019).
[203] Y. Wu, M. Yuan, J. Song, X. Chen, H. Yang, Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 13(8), 8505–8511 (2019).
[204] C.-L. Liu, K. Zhang, G. Chen, Hydrogen therapy: from mechanism to cerebral diseases. Med. Gas Res. 6(1), 48 (2016).
[205] M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao et al., Acid-responsive H2-releasing 2D MgB2 nanosheet for therapeutic synergy and side effect attenuation of gastric cancer chemotherapy. Adv. Healthc. Mater. 8(13), 1900157 (2019).
[206] P. Zhao, Z. Jin, Q. Chen, T. Yang, D. Chen et al., Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 9(1), 4241 (2018).
[207] X. Li, B. Dai, J. Guo, L. Zheng, Q. Guo et al., Nanoparticle-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy. Nano-micro Lett. 13(1), 149 (2021).
[208] C. Xu, S. Wang, H. Wang, K. Liu, S. Zhang et al., Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21(5), 1982–1991 (2021).
[209] L. Kong, C. Chen, F. Mou, Y. Feng, M. You et al., Magnesium particles coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suiers to scavenge continuously generated hydroxyl radicals in long term. Part. Part. Syst. Charact. 36(2), 1800424 (2019).
[210] I. De Cock, E. Zagato, K. Braeckmans, Y. Luan, N. de Jong et al., Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J. Controll. Release 197, 20–28 (2015).
[211] H. Lee, H. Kim, H. Han, M. Lee, S. Lee et al., Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed. Eng. Lett. 7, 59–69 (2017).
[212] Y. Feng, X. Chang, H. Liu, Y. Hu, T. Li et al., Multi-response biocompatible Janus micromotor for ultrasonic imaging contrast enhancement. A. Mater. Today 23, 101026 (2021).
[213] W. Zhou, Y. Zhang, S. Meng, C. Xing, M. Ma et al., Micro/nano-structures on biodegradable magnesium@ PLGA and their cytotoxicity, photothermal, and anti-tumor effects. Small Methods 5(2), 2000920 (2021).
[214] Z. Wu, J. Li, B.E.F. de Ávila, T. Li, W. Gao et al., Water powered cell mimicking Janus micromotor. Adv. Funct. Mater. 25(48), 7497–7501 (2015).
[215] F. Zhang, R. Mundaca-Uribe, H. Gong, B. Esteban-Fernández de Ávila, M. Beltrán-Gastélum et al., A macrophage-magnesium hybrid biomotor: fabrication and characterization. Adv. Mater. 31(27), 1901828 (2019).
[216] K. Xiong, L. Xu, J. Lin, F. Mou, J. Guan, Mg-based micromotors with motion responsive to dual stimuli. Research 2020, 213981 (2020).
[217] M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144(1), 51–63 (2010).
[218] Z. Limam, S. Selmi, S. Sadok, A. El Abed, Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10(4), 640–647 (2011).
[219] L. Qi, Z. Xu, X. Jiang, C. Hu, X. Zou, Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339(16), 2693–2700 (2004).
[220] J.A. Delezuk, D.E. Ramírez-Herrera, B.E.-F. de Ávila, J. Wang, Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 9(6), 2195–2200 (2017).
[221] D. Rojas, B. Jurado-Sánchez, A. Escarpa, “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88(7), 4153–4160 (2016).
[222] S. Cinti, G. Valdés-Ramírez, W. Gao, J. Li, G. Palleschi et al., Microengine-assisted electrochemical measurements at printable sensor strips. Chem. Commun. 51(41), 8668–8671 (2015).
[223] Z. Lin, C. Gao, D. Wang, Q. He, Bubble-propelled Janus gallium/zinc micromotors for the active treatment of bacterial infections. Angew. Chem. Int. Ed. 60(16), 8750–8754 (2021).
[224] M. Zhou, T. Hou, J. Li, S. Yu, Z. Xu et al., Self-propelled and targeted drug delivery of poly (aspartic acid)/iron-zinc microrocket in the stomach. ACS Nano 13(2), 1324–1332 (2019).
[225] W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao et al., Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1), 117–123 (2015).
[226] Q. Cui, T.-H. Le, Y.-J. Lin, Y.-B. Miao, I.-T. Sung et al., A self-powered battery-driven drug delivery device that can function as a micromotor and galvanically actuate localized payload release. Nano Energy 66, 104120 (2019).
[227] M. Moravej, A. Purnama, M. Fiset, J. Couet, D. Mantovani, Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater. 6(5), 1843–1851 (2010).
[228] H. Zhang, W. Zhang, H. Qiu, G. Zhang, X. Li et al., A biodegradable metal polymer composite stent safe and effective on physiological and serum containing biomimetic conditions. Adv. Healthc. Mater. 11(22), 2201740 (2022).
[229] B. Paul, A. Lode, A.-M. Placht, A. Voß, S. Pilz et al., Cell-material interactions in direct contact culture of endothelial cells on biodegradable iron-based stents fabricated by laser powder bed fusion and impact of ion release. ACS A. Mater. Interfaces 14(1), 439–451 (2021).
[230] Y. Su, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang et al., Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 37(4), 428–441 (2019).
[231] E. Piskin, D. Cianciosi, S. Gulec, M. Tomas, E. Capanoglu, Iron absorption: factors, limitations, and improvement methods. ACS Omega 7(24), 20441–20456 (2022).