• Chinese Journal of Lasers
  • Vol. 52, Issue 6, 0601003 (2025)
Jiawei Wang1, Xiang Li1, Fan Li1, Hao Dang1..., Tianshi Huang1, Desheng Zhao1,*, Long Tian1,2, Wei Li1 and Yaohui Zheng1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Shanxi , China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi ,China
  • show less
    DOI: 10.3788/CJL241186 Cite this Article Set citation alerts
    Jiawei Wang, Xiang Li, Fan Li, Hao Dang, Tianshi Huang, Desheng Zhao, Long Tian, Wei Li, Yaohui Zheng. High‐Power Single‐Frequency Fiber Laser System for Ground‐Based Gravitational Wave Detection[J]. Chinese Journal of Lasers, 2025, 52(6): 0601003 Copy Citation Text show less
    References

    [1] Bailes M, Berger B K, Brady P R et al. Gravitational-wave physics and astronomy in the 2020s and 2030s[J]. Nature Reviews Physics, 3, 344-366(2021).

    [2] Tse M, Yu H C, Kijbunchoo N et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 123, 231107(2019).

    [3] Taylor J H, Weisberg J M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16[J]. The Astrophysical Journal, 345, 434(1989).

    [4] Danzmann K, Diger A R. LISA technology: concept, status, prospects[J]. Classical and Quantum Gravity, 20, S1-S9(2003).

    [5] Reitze D, Adhikari R, Ballmer S et al. Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO[J]. Bulletin of the American Astronomical Society, 51, 35(2019).

    [6] Abbott B P. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [7] Abbott B P, Abbott R, Abbott T D et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence[J]. Physical Review Letters, 119, 141101(2017).

    [8] Zhang J N, Liu X L, Wang H T et al. Near thermal noise limit, 5 W single frequency fiber laser base on the ring cavity configuration[J]. Optics Express, 32, 104-112(2023).

    [9] Huang J M, Zhao Q L, Zheng J J et al. A 102 W high-power linearly-polarized all-fiber single-frequency laser at 1560 nm[J]. Photonics, 9, 396(2022).

    [10] Zhao J, Guiraud G, Pierre C et al. High-power all-fiber ultra-low noise laser[J]. Applied Physics B, 124, 114(2018).

    [11] Rowan S, Hough J. Gravitational wave detection by interferometry (ground and space)[J]. Living Reviews in Relativity, 3, 3(2016).

    [12] Ottaway D J, Veitch P J, Hollitt C et al. Frequency and intensity noise of an injection-locked Nd∶YAG ring laser[J]. Applied Physics B, 71, 163-168(2000).

    [13] Saulson P R[M]. Fundamentals of interferometric gravitational wave detectors(2017).

    [14] Liu Q, Wang Z Y, Wang J H et al. Research progress on low-noise laser for space-based gravitational wave detector (invited)[J]. Acta Photonica Sinica, 51, 0751409(2022).

    [15] Somiya K, Chen Y, Kawamura S et al. Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes[J]. Physical Review D, 73, 122005(2006).

    [16] ET Steering Committee. Design report Update 2020 for the Einstein Telescope: No[EB/OL]. https://apps.et-gw.eu/tds/?r=17245

    [17] Abbott R S, King P J. Diode-pumped Nd∶YAG laser intensity noise suppression using a current shunt[J]. Review Scientific Instruments, 72, 1346-1349(2001).

    [18] Heurs M, Quetschke V M, Willke B et al. Simultaneously suppressing frequency and intensity noise in a Nd∶YAG nonplanar ring oscillator by means of the current-lock technique[J]. Optics Letters, 29, 2148-2150(2004).

    [19] Barr B W, Strain K A, Killow C J. Laser amplitude stabilization for advanced interferometric gravitational wave detectors[J]. Classical and Quantum Gravity, 22, 4279-4283(2005).

    [20] Dixneuf C, Guiraud G, Bardin Y V et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm[J]. Optics Express, 28, 10960-10969(2020).

    [21] Kwee P, Bogan C, Danzmann K et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO[J]. Optics Express, 20, 10617-10634(2012).

    [22] Wu Z S. Research on the noise suppression of 1.5 μm single-frequency fiber laser[D], 15-27(2019).

    [23] Michael T. Improved spectrum estimation from digitized time series on a logarithmic frequency axis[D], 120-129(2006).

    [24] Li F, Wang J W, Gao Z C et al. Laser intensity noise evaluation system for space-based gravitational wave detection[J]. Acta Physica Sinica, 71, 209501(2022).

    [25] Willke B. Stabilized lasers for advanced gravitational wave detectors[J]. Laser & Photonics Reviews, 4, 780-794(2010).

    [26] Michael T. Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA[D], 121-122(2005).

    [27] Hu H L, Yu Y H, Chen D J et al. Measurement technology of laser relative intensity noise at low frequency for space-based gravitational wave detection[J]. Chinese Journal of Lasers, 50, 2301009(2023).

    [28] Kwee P, Willke B, Danzmann K. Shot-noise-limited laser power stabilization with a high-power photodiode array[J]. Optics Letters, 34, 2912(2009).

    [29] Zheng L A, Li F, Wang J W et al. Low noise photoelectric detection technology for laser intensity noise suppression in mHz band[J]. Acta Photonica Sinica, 52, 0552220(2023).

    [30] Seifert F, Kwee P, Heurs M et al. Laser power stabilization for second-generation gravitational wave detectors[J]. Optics Letters, 31, 2000-2002(2006).

    [31] Wang J W, Li J B, Li F et al. Programmable precision voltage reference source for space-based gravitational wave detection[J]. Acta Physica Sinica, 72, 049502(2023).

    Jiawei Wang, Xiang Li, Fan Li, Hao Dang, Tianshi Huang, Desheng Zhao, Long Tian, Wei Li, Yaohui Zheng. High‐Power Single‐Frequency Fiber Laser System for Ground‐Based Gravitational Wave Detection[J]. Chinese Journal of Lasers, 2025, 52(6): 0601003
    Download Citation