[1] Bailes M, Berger B K, Brady P R et al. Gravitational-wave physics and astronomy in the 2020s and 2030s[J]. Nature Reviews Physics, 3, 344-366(2021).
[2] Tse M, Yu H C, Kijbunchoo N et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 123, 231107(2019).
[3] Taylor J H, Weisberg J M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16[J]. The Astrophysical Journal, 345, 434(1989).
[4] Danzmann K, Diger A R. LISA technology: concept, status, prospects[J]. Classical and Quantum Gravity, 20, S1-S9(2003).
[5] Reitze D, Adhikari R, Ballmer S et al. Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO[J]. Bulletin of the American Astronomical Society, 51, 35(2019).
[6] Abbott B P. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
[7] Abbott B P, Abbott R, Abbott T D et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence[J]. Physical Review Letters, 119, 141101(2017).
[8] Zhang J N, Liu X L, Wang H T et al. Near thermal noise limit, 5 W single frequency fiber laser base on the ring cavity configuration[J]. Optics Express, 32, 104-112(2023).
[9] Huang J M, Zhao Q L, Zheng J J et al. A 102 W high-power linearly-polarized all-fiber single-frequency laser at 1560 nm[J]. Photonics, 9, 396(2022).
[10] Zhao J, Guiraud G, Pierre C et al. High-power all-fiber ultra-low noise laser[J]. Applied Physics B, 124, 114(2018).
[11] Rowan S, Hough J. Gravitational wave detection by interferometry (ground and space)[J]. Living Reviews in Relativity, 3, 3(2016).
[12] Ottaway D J, Veitch P J, Hollitt C et al. Frequency and intensity noise of an injection-locked Nd∶YAG ring laser[J]. Applied Physics B, 71, 163-168(2000).
[13] Saulson P R[M]. Fundamentals of interferometric gravitational wave detectors(2017).
[14] Liu Q, Wang Z Y, Wang J H et al. Research progress on low-noise laser for space-based gravitational wave detector (invited)[J]. Acta Photonica Sinica, 51, 0751409(2022).
[15] Somiya K, Chen Y, Kawamura S et al. Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes[J]. Physical Review D, 73, 122005(2006).
[16] ET Steering Committee. Design report Update 2020 for the Einstein Telescope: No[EB/OL]. https://apps.et-gw.eu/tds/?r=17245
[17] Abbott R S, King P J. Diode-pumped Nd∶YAG laser intensity noise suppression using a current shunt[J]. Review Scientific Instruments, 72, 1346-1349(2001).
[18] Heurs M, Quetschke V M, Willke B et al. Simultaneously suppressing frequency and intensity noise in a Nd∶YAG nonplanar ring oscillator by means of the current-lock technique[J]. Optics Letters, 29, 2148-2150(2004).
[19] Barr B W, Strain K A, Killow C J. Laser amplitude stabilization for advanced interferometric gravitational wave detectors[J]. Classical and Quantum Gravity, 22, 4279-4283(2005).
[20] Dixneuf C, Guiraud G, Bardin Y V et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm[J]. Optics Express, 28, 10960-10969(2020).
[21] Kwee P, Bogan C, Danzmann K et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO[J]. Optics Express, 20, 10617-10634(2012).
[22] Wu Z S. Research on the noise suppression of 1.5 μm single-frequency fiber laser[D], 15-27(2019).
[23] Michael T. Improved spectrum estimation from digitized time series on a logarithmic frequency axis[D], 120-129(2006).
[24] Li F, Wang J W, Gao Z C et al. Laser intensity noise evaluation system for space-based gravitational wave detection[J]. Acta Physica Sinica, 71, 209501(2022).
[25] Willke B. Stabilized lasers for advanced gravitational wave detectors[J]. Laser & Photonics Reviews, 4, 780-794(2010).
[26] Michael T. Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA[D], 121-122(2005).
[27] Hu H L, Yu Y H, Chen D J et al. Measurement technology of laser relative intensity noise at low frequency for space-based gravitational wave detection[J]. Chinese Journal of Lasers, 50, 2301009(2023).
[28] Kwee P, Willke B, Danzmann K. Shot-noise-limited laser power stabilization with a high-power photodiode array[J]. Optics Letters, 34, 2912(2009).
[29] Zheng L A, Li F, Wang J W et al. Low noise photoelectric detection technology for laser intensity noise suppression in mHz band[J]. Acta Photonica Sinica, 52, 0552220(2023).
[30] Seifert F, Kwee P, Heurs M et al. Laser power stabilization for second-generation gravitational wave detectors[J]. Optics Letters, 31, 2000-2002(2006).
[31] Wang J W, Li J B, Li F et al. Programmable precision voltage reference source for space-based gravitational wave detection[J]. Acta Physica Sinica, 72, 049502(2023).