[1] LeiGL,LouCM,LiuXH,XieJY, LiZS,ZhengWand Zhang J 2021 Thin films of tungsten oxide materials for advanced gas sensors Sens. Actuators B 341 129996
[2] Qu F D, Yuan Y and Yang M H 2017 Programmed synthesis of Sn3N4 nanoparticles via a soft chemistry approach with urea: application for ethanol vapor sensing Chem. Mater. 29 969–74
[3] ChengZX,QiWL,PangCH,ThomasT, Wu T, LiuSQ and Yang M H 2021 Recent advances in transition metal nitride-based materials for photocatalytic applications Adv. Funct. Mater. 31 2100553
[4] Raza M H, Movlaee K, Leonardi S G, Barsan N, Neri G and Pinna N 2020 Gas sensing of NiO–SCCNT core-shell heterostructures: optimization by radial modulation of the hole-accumulation layer Adv. Funct. Mater. 30 1906874
[5] Raza M H, Movlaee K, Wu Y L, El-Refaei S M, Karg M, Leonardi S G, Neri G and Pinna N 2019 Tuning the NiO thin film morphology on carbon nanotubes by atomic layer deposition for enzyme-free glucose sensing ChemElectroChem 6 383–92
[6] Yuan Y, Wang J C, Adimi S, Shen H J, Thomas T, Ma R G, Attfield J P and Yang M H 2020 Zirconium nitride catalysts surpass platinum for oxygen reduction Nat. Mater. 19 282–6
[7] Fan XX,XuYJ,MaCYandHeWM2021 In-situ growth of Co3O4 nanoparticles based on electrospray for an acetone gas sensor J. Alloys Compd. 854 157234
[8] ChenXX,ShenYB,ZhouPF, ZhaoSK,ZhongXX, Li T T, Han C, Wei D Z and Meng D 2019 NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization Sens. Actuators B 280 151–61
[9] RenY, ZouYD,LiuY, ZhouXR,MaJH,ZhaoDY, WeiG F, Ai Y J, XiS B and Deng Y H 2020Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires Nat. Mater. 19 203–11
[10] LiQC,ChenD,MiaoJM,LinSJ,Yu ZX,CuiDX, Yang Z and Chen X P 2021 Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application Sens. Actuators B 326 128952
[11] Shendage S S, Patil V L, Vanalakar S A, Patil S P, Harale N S, Bhosale J L, Kim J H and Patil P S 2017 Sensitive and selective NO2 gas sensor based on WO3 nanoplates Sens. Actuators B 240 426–33
[12] WangSR,YangJD,ZhangHX,WangYS,GaoXL, Wang L W and Zhu Z Y 2015 One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor Sens. Actuators B 207 83–89
[13] LouCM,LeiGL,LiuXH,XieJY, LiZS,ZhengW, Goel N, Kumar M and Zhang J 2022 Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors Coord. Chem. Rev. 452 214280
[14] Yu Q et al 2022 Bimetallic MOFs-derived core-shell structured mesoporous Sn-doped NiO for conductometric ppb-level xylene gas sensors Sens. Actuators B 372 132620
[15] Gong H M, Zhao C H and Wang F 2018 On-chip growth of SnO2/ZnO core-shell nanosheet arrays for ethanol detection IEEE Electron Device Lett. 39 1065–8
[16] Pan HY, LiZS,LouCM,LeiGL,XieJY, ZhengW, Liu X H and Zhang J 2022 Anchoring Fe2O3 nanosheets on NiO nanoprisms to regulate the electronic properties for improved n-butanol detection Sens. Actuators B 354 131223
[17] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31
[18] Ritala M, Leskel. M, Dekker J P, Mutsaers C, Soininen P J and Skarp J 1999 Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition Chem. Vapor Depos. 5 7–9
[19] Suntola T 1992 Atomic layer epitaxy Thin Solid Films 216 84–89
[20] George S M, Ott A W and Klaus J W 1996 Surface chemistry for atomic layer growth J. Phys. Chem. 100 13121–31
[21] Xu Y S, Zheng L L, Yang C, Zheng W, Liu X H and Zhang J 2020 Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection Sens. Actuators B 310 127846
[22] Sysoev V V, Button B K, Wepsiec K, Dmitriev S and Kolmakov A 2006 Toward the nanoscopic ”electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano-and mesowire sensors Nano Lett. 6 1584–8
[23] Mai L et al 2020 From precursor chemistry to gas sensors: plasma-enhanced atomic layer deposition process engineering for zinc oxide layers from a nonpyrophoric zinc precursor for gas barrier and sensor applications Small 16 1907506
[24] Liu B, Alamri M, Walsh M, Doolin J L, Berrie C L and Wu J Z 2020 Development of an ALD-Pt@SWCNT/ graphene 3D nanohybrid architecture for hydrogen sensing ACS Appl. Mater. Interfaces 12 53115–24
[25] Weber M, Graniel O, Balme S, Miele P and Bechelany M 2019 On the use of MOFs and ALD layers as nanomembranes for the enhancement of gas sensors selectivity Nanomaterials 9 1552
[26] LiZS,LouCM,LeiGL,LuGC,Pan HY, LiuXHand Zhang J 2022 Atomic layer deposition of Rh/ZnO nanostructures for anti-humidity detection of trimethylamine Sens. Actuators B 355 131347
[27] Duy L T, Kang H, Shin H C, Han S, Singh R and Seo H 2021 Multifunctional nanohybrid of alumina and indium oxide prepared using the atomic layer deposition technique ACS Appl. Mater. Interfaces 13 59115–25
[28] SongYG,BaekIH,YimJG,EomT, ChungTM,LeeCH, Hwang C S, Kang C Y and Kim S K 2022 Cross-linked structure of self-aligned p-type SnS nanoplates for highly sensitive NO2 detection at room temperature J. Mater. Chem. A 10 4711–9
[29] Xu Y S, Zheng W, Liu X H, Zhang L Q, Zheng L L, Yang C, Pinna N and Zhang J 2020 Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection Mater. Horiz. 7 1519–27
[30] HuQM,MaZH,YangJ,GaoTG,Wu Y, DongZ,LiXY, Zeng W, Zhao S C and Xu J Q 2021 Ultrathin PANI-decorated, highly purified and well dispersed array cncs for highly sensitive HCHO sensors Chemosensors 9 276
[31] LeiGL,Pan HY, MeiHS,LiuXH,LuGC,LouCM, Li Z S and Zhang J 2022 Emerging single atom catalysts in gas sensors Chem. Soc. Rev. 51 7260–80
[32] Fonseca J and Lu J L 2021 Single-atom catalysts designed and prepared by the atomic layer deposition technique ACS Catal. 11 7018–59
[33] Pinna N and Knez M 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley) (https://doi. org/10.1002/9783527639915)
[34] Marichy C, Bechelany M and Pinna N 2012 Atomic layer deposition of nanostructured materials for energy and environmental applications Adv. Mater. 24 1017–32
[35] Johnson R W, Hultqvist A and Bent S F 2014 A brief review of atomic layer deposition: from fundamentals to applications Mater. Today 17 236–46
[36] Leskel. M and Ritala M 2003 Atomic layer deposition chemistry: recent developments and future challenges Angew. Chem., Int. Ed. 42 5548–54
[37] Cremers V, Puurunen R L and Dendooven J 2019 Conformality in atomic layer deposition: current status overview of analysis and modelling Appl. Phys. Rev. 6 021302
[38] Chalker P R 2016 Photochemical atomic layer deposition and etching Surf. Coat. Technol. 291 258–63
[39] Poodt P, Knaapen N, Illiberi A, Roozeboom F and van Asten A 2012 Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics J. Vac. Sci. Technol. A 30 01A142
[40] HongT, KimK,ChoiSH,LeeSH,HanKL,LimJH and Park J S 2022 Structural, optical, and electrical properties of InOx thin films deposited by plasma-enhanced atomic layer deposition for flexible device applications ACS Appl. Electron. Mater. 4 3010–7
[41] Oviroh P O, Akbarzadeh R, Pan D Q, Coetzee R A M and Jen T C 2019 New development of atomic layer deposition: processes, methods and applications Sci. Technol. Adv. Mater. 20 465–96
[42] Parsons G N, George S M and Knez M 2011 Progress and future directions for atomic layer deposition and ALD-based chemistry MRS Bull. 36 865–71
[43] Ali K, Choi K H and Muhammad N M 2014 Roll-to-roll atmospheric atomic layer deposition of Al2O3 thin films on PET substrates Chem. Vapor Depos. 20 380–7
[44] Walker J M, Akbar S A and Morris P A 2019 Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review Sens. Actuators B 286 624–40
[45] Wang J, Yin Z G, Hermerschmidt F, List-Kratochvil E J W and Pinna N 2021 Impact of different intermediate layers on the morphology and crystallinity of TiO2 grown on carbon nanotubes by atomic layer deposition Adv. Mater. Interfaces 8 2100759
[46] Gai L, Lai R, Dong X, Wu X, Luan Q, Wang J, Lin H, Ding W, Wu G and Xie W 2022 Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions Rare Met. 41 1818–42
[47] Xu S P, Xu Y, Zhao H P, Xu R and Lei Y 2018 Sensitive gas-sensing by creating adsorption active sites: coating an SnO2 layer on triangle arrays ACS Appl. Mater. Interfaces 10 29092–9
[48] LiZJ et al 2019 Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature Mater. Horiz. 6 470–506
[49] LouCM,WangK,MeiHS,XieJY, ZhengW, LiuXHand Zhang J 2021 ZnO nanoarrays via a thermal decomposition–deposition method for sensitive and selective NO2 detection CrystEngComm 23 3654–63
[50] BaiJL,LuoYB,AnBX,WangQ,ChengX,LiJP, Pan X J, ZhouJ Y, Wang Y R and Xie EQ2020 Ni/Au bimetal decorated In2O3 nanotubes for ultra-sensitive ethanol detection Sens. Actuators B 311 127938
[51] KimJH,LeeJH,KimJY, MirzaeiA,KimHWand Kim S S 2019 Enhancement of CO and NO2 sensing in n–SnO2–p–Cu2O core-shell nanofibers by shell optimization J. Hazards Mater. 376 68–82
[52] HanCH,LiXW, ShaoCL,LiXH,MaJG,ZhangXTand Liu Y C 2019 Composition-controllable p–CuO/n–ZnO hollow nanofibers for high-performance H2S detection Sens. Actuators B 285 495–503
[53] HuQM,Wu CX,DongZ,ZhangGX,MaZH,WangXH, Sun S H and Xu J Q 2022 Direct confirmation of confinement effects by NiO confined in helical SnO2 nanocoils and its application in sensors J. Mater. Chem. A 10 2786–94
[54] LuGC,LiuXH,ZhengW, XieJY, LiZS,LouCM, Lei G L and Zhang J 2022 UV-activated single-layer WSe2 for highly sensitive NO2 detection Rare Met. 41 1520–8
[55] Xu Y S, Xie J Y, Zhang Y F, Tian F H, Yang C, Zheng W, Liu X H, Zhang J and Pinna N 2021 Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature J. Hazards Mater. 411 125120
[56] Kim H J and Lee J H 2014 Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview Sens. Actuators B 192 607–27
[57] HongY, KimCH,ShinJ,KimKY, KimJS,HwangCS and Lee J H 2016 Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate Sens. Actuators B 232 653–9
[58] LinYH,HsuehYC,LeePS,WangCC,Wu JM,PerngTP and Shih H C 2011 Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum J. Mater. Chem. 21 10552–8
[59] Abe H, Kimura Y, Ma T, Tadaki D, Hirano-Iwata A and Niwano M 2020 Response characteristics of a highly sensitive gas sensor using a titanium oxide nanotube film decorated with platinum nanoparticles Sens. Actuators B 321 128525
[60] Zhou T and Zhang T 2021 Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for chemiresistive gas sensors Small Method 5 2100515
[61] Miller D R, Akbar S A and Morris P A 2014 Nanoscale metal oxide-based heterojunctions for gas sensing: a review Sens. Actuators B 204 250–72
[62] Zheng L L, Xie J Y, Liu X H, Yang C, Zheng W and Zhang J 2020 Unveiling the electronic interaction in ZnO/PtO/Pt nanoarrays for catalytic detection of triethylamine with ultrahigh sensitivity ACS Appl. Mater. Interfaces 12 46267–76
[63] Darmadi I, Nugroho F A A and Langhammer C 2020 High-performance nanostructured palladium-based hydrogen sensors-current limitations and strategies for their mitigation ACS Sens. 5 3306–27
[64] Favier F, Walter E C, Zach M P, Benter T and Penner R M 2001 Hydrogen sensors and switches from electrodeposited palladium mesowire arrays Science 293 2227–31
[65] JoMS,KimKH,ChoiKW, LeeJS,Yoo JY, KimSH, Jin H, Seo M H and Yoon J B 2022 Wireless and linear hydrogen detection up to 4% with high sensitivity through phase-transition-inhibited Pd nanowires ACS Nano 16 11957–67
[66] LeiGL,LouCM,LiZS,XieJY, LuGC,Pan HY, Mei H S, Liu X H and Zhang J 2022 Heterogeneous Co3O4/AgO nanorods for conductometric triethylamine sensing at 90 .C Sens. Actuators B 351 131005
[67] LiuC,WangBQ,LiuT, SunP, GaoY, LiuFMandLuGY 2016 Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures Sens. Actuators B 235 294–301
[68] Al-Hashem M, Akbar S and Morris P 2019 Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review Sens. Actuators B 301 126845
[69] Romanov R I, Kozodaev M G, Lebedinskii Y Y, Perevalov T V, Slavich A S, Hwang C S and Markeev A M 2020 Radical-enhanced atomic layer deposition of a tungsten oxide film with the tunable oxygen vacancy concentration J. Phys. Chem. C 124 18156–64
[70] Park K and Lee J S 2016 Reliable resistive switching memory based on oxygen-vacancy-controlled bilayer structures RSC Adv. 6 21736–41
[71] Martínez-Puente M A, Horley P, Aguirre-Tostado F S, López-Medina J, Borbón-Nu.nez H A, Tiznado H, Susarrey-Arce A and Martínez-Guerra E 2022 ALD and PEALD deposition of HfO2 and its effects on the nature of oxygen vacancies Mater. Sci. Eng. B 285 115964
[72] Bae G, Kim M, Lee A, Ji S, Jang M, Yim S, Song W, Lee S S, Yoon D H and An K S 2022 Nanometric lamination of zinc oxide nanofilms with gold nanoparticles for self-perceived periodontal disease sensors Composites B 230 109490
[73] Choi K I, Hwang S J, Dai Z F, Chan Kang Y and Lee J H 2014 Rh-catalyzed WO3 with anomalous humidity dependence of gas sensing characteristics RSC Adv. 4 53130–6
[74] Chinh N D, Hien T T, Do Van L, Hieu N M, Quang N D, Lee S M, Kim C and Kim D 2019 Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration Sens. Actuators B 281 262–72
[75] XuYS,LouCM,ZhengLL,ZhengW, LiuXH, Kumar M and Zhang J 2020 Highly sensitive and selective detection of acetone based on platinum sensitized porous tungsten oxide nanospheres Sens. Actuators B 307 127616
[76] Weber M, Kim J H, Lee J H, Kim J Y, Iatsunskyi I, Coy E, Drobek M, Julbe A, Bechelany M and Kim S S 2018 High-performance nanowire hydrogen sensors by exploiting the synergistic effect of Pd nanoparticles and metal-organic framework membranes ACS Appl. Mater. Interfaces 10 34765–73
[77] Kim J H, Mirzaei A, Kim H W and Kim S S 2017 Extremely sensitive and selective sub-ppm CO detection by the synergistic effect of Au nanoparticles and core-shell nanowires Sens. Actuators B 249 177–88
[78] Weber M, Kim J Y, Lee J H, Kim J H, Iatsunskyi I, Coy E, Miele P, Bechelany M and Kim S S 2019 Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires J. Mater. Chem. A 7 8107–16
[79] Kondalkar V V, Duy L T, Seo H and Lee K 2019 Nanohybrids of Pt-functionalized Al2O3/ZnO core shell nanorods for high -performance MEMS-based acetylene gas sensor ACS Appl. Mater. Interfaces 11 25891–900
[80] Lupan O et al 2018 Ultra-thin TiO2 films by atomic layer deposition and surface functionalization with Au nanodots for sensing applications Mater. Sci. Semicond. Process. 87 44–53
[81] Ko WC,KimKM,Kwon YJ,ChoiH,ParkJKand Jeong Y K 2020 ALD-assisted synthesis of V2O5 nanoislands on SnO2 nanowires for improving NO2 sensing performance Appl. Surf. Sci. 509 144821
[82] LouCM,Pan HY, MeiHS,LuGC,LiuXHandZhangJ 2022 Low coordination states in Co3O4/NiOx heterostructures by atomic layer deposition for enhanced gas detection Chem. Eng. J. 448 137641
[83] XieJY, LiuXH,JingSL,PangC,LiuQSandZhangJ 2021 Chemical and electronic modulation via atomic layer deposition of NiO on porous In2O3 films to boost NO2 detection ACS Appl. Mater. Interfaces 13 39621–32
[84] LouCM,HuangQX,LiZS,LeiGL,LiuXHandZhangJ 2021 Fe2O3-sensitized SnO2 nanosheets via atomic layer deposition for sensitive formaldehyde detection Sens. Actuators B 345 130429
[85] Yuan KP, ZhuLY, YangJH,HangCZ,Tao JJ,MaHP, Jiang A Q, Zhang D W and Lu H L 2020 Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing J. Colloid Interface Sci. 568 81–88
[86] Kei C C, Wang C C and Perng T P 2021 Modulation of wall thickness of Al-doped ZnO nanotubes by nanolamination of atomic layer deposition for oxygen sensing J. Am. Ceram. Soc. 104 4938–45
[87] Kim J H, Katoch A and Kim S S 2016 Optimum shell thickness and underlying sensing mechanism in p-n CuO–ZnO core-shell nanowires Sens. Actuators B 222 249–56
[88] Raza M H, Kaur N, Comini E and Pinna N 2021 SnO2–SiO2 1D core-shell nanowires heterostructures for selective hydrogen sensing Adv. Mater. Interfaces 8 2100939
[89] Kim J H, Mirzaei A, Bang J H, Kim H W and Kim S S 2021 Achievement of self-heated sensing of hazardous gases by WS2 (core)–SnO2 (shell) nanosheets J. Hazards Mater. 412 125196
[90] XueXT, ZhuLY, Yuan KP, ZengC,LiXX,MaHP, Lu H L and Zhang D W 2020 ZnO branched p–CuxO @n–ZnO heterojunction nanowires for improving acetone gas sensing performance Sens. Actuators B 324 128729
[91] Kim J H, Mirzaei A, Kim H W and Kim S S 2020 Variation of shell thickness in ZnO–SnO2 core-shell nanowires for optimizing sensing behaviors to CO, C6H6, and C7H8 gases Sens. Actuators B 302 127150
[92] Raza M H, Di Chio R, Movlaee K, Amsalem P, Koch N, Barsan N, Neri G and Pinna N 2022 Role of heterojunctions of core-shell heterostructures in gas sensing ACS Appl. Mater. Interfaces 14 22041–52
[93] Wei Z H, Akbari M K, Hai Z Y, Ramachandran R K, Detavernier C, Verpoort F, Kats E, Xu H Y, Hu J and Zhuiykov S 2019 Ultra-thin sub-10 nm Ga2O3–WO3 heterostructures developed by atomic layer deposition for sensitive and selective C2H5OH detection on ppm level Sens. Actuators B 287 147–56
[94] Mirzaei A, Park S, Kheel H, Sun G J, Lee S and Lee C 2016 ZnO-capped nanorod gas sensors Ceram. Int. 42 6187–97
[95] Zhao C H, Bai J L, Gong H M, Liu S and Wang F 2018 Tailorable morphology of core-shell nanofibers with surface wrinkles for enhanced gas-sensing properties ACS Appl. Nano Mater. 1 6357–67
[96] Raza M H, Kaur N, Comini E and Pinna N 2020 Toward optimized radial modulation of the space-charge region in one-dimensional SnO2–NiO core-shell nanowires for hydrogen sensing ACS Appl. Mater. Interfaces 12 4594–606
[97] Byoun Y, Jin C and Choi S W 2020 Strategy for sensitive and selective NO2 detection at low temperatures utilizing p-type TeO2 nanowire-based sensors by formation of discrete n-type ZnO nanoclusters Ceram. Int. 46 19365–74
[98] Bakos L P et al 2020 Photocatalytic and gas sensitive multiwalled carbon nanotube/TiO2–ZnO and ZnO–TiO2 composites prepared by atomic layer deposition Nanomaterials 10 252
[99] Yang F, Zhu J Y, Zou X S, Pang X, Yang R Z, Chen S F, Fang Y, Shao T, Luo X and Zhang L 2018 Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance Ceram. Int. 44 1078–85
[100] Wang L L, Jiang K and Shen G Z 2021 Wearable, implantable, and interventional medical devices based on smart electronic skins Adv. Mater. Technol. 6 2100107
[101] Gao W, Ota H, Kiriya D, Takei K and Javey A 2019 Flexible electronics toward wearable sensing Acc. Chem. Res. 52 523–33