• Laser & Optoelectronics Progress
  • Vol. 56, Issue 13, 131501 (2019)
Jianguo Liang1,2, Maolin Chen3, and Hong Ma1,2,*
Author Affiliations
  • 1 Chongqing Survey Institute, Chongqing 401121, China
  • 2 Chongqing Engineering Research Center of Geographic National Condition Monitoring, Chongqing 401121, China
  • 3 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • show less
    DOI: 10.3788/LOP56.131501 Cite this Article Set citation alerts
    Jianguo Liang, Maolin Chen, Hong Ma. Registration of Terrestrial Laser Scanning Data Based on Projection Distribution Entropy[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131501 Copy Citation Text show less
    References

    [1] Pu S, Vosselman G. Knowledge based reconstruction of building models from terrestrial laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 575-584(2009). http://www.sciencedirect.com/science/article/pii/S0924271609000501

    [2] Fang W, Huang X F, Zhang F. Mural image rectification based on correction of laser point cloud intensity[J]. Acta Geodaetica et Cartographica Sinica, 44, 541-547(2015).

    [3] Li C, Lu X P, Zhu N N et al. Continuously extracting section and deformation analysis for subway tunnel based on LiDAR points[J]. Acta Geodaetica et Cartographica Sinica, 44, 1056-1062(2015).

    [4] Bu G C, Wang P. Adaptive estimation method for diameter at breast height based on terrestrial laser scanning[J]. Laser & Optoelectronics Progress, 53, 082803(2016).

    [5] Besl P J. McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256(1992).

    [6] Chen Y, Medioni G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 10, 145-155(1992). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=132043

    [8] Zhang Z Y. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 13, 119-152(1994). http://link.springer.com/article/10.1007/BF01427149

    [9] Barnea S, Filin S. Keypoint based autonomous registration of terrestrial laser point-clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 63, 19-35(2008). http://www.sciencedirect.com/science/article/pii/S0924271607000469

    [10] Li J, Wang Z M, Ma Y R et al. Automatic and accurate mosaicking of point clouds from multi-station laser scanning[J]. Geomatics and Information Science of Wuhan University, 39, 1114-1120(2014).

    [11] Bendels G H, Degener P, Wahl R et al. Image-based registration of 3D-range data using feature surface elements. [C]//Proceedings of the 5th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, December 7-10, 2004, Oudenaarde, Belgium. Switzerland: Eurographics Association , 115-124(2004).

    [12] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004). http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1023/B:VISI.0000029664.99615.94&rfr_id=trans/tp/2008/10/ttp2008101683.htm

    [13] Theiler P W, Wegner J D, Schindler K. Keypoint-based 4-points congruent sets-automated marker-less registration of laser scans[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 149-163(2014). http://www.sciencedirect.com/science/article/pii/S0924271614001701

    [14] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration. [C]//2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, Kobe, Japan. New York: IEEE, 3212-3217(2009).

    [15] Chen M L, Lu W X, Wan Y C et al. Automatic registration of terrestrial point clouds without additional information[J]. Chinese Journal of Lasers, 43, 0414003(2016).

    [16] Lu J, Peng Z T. Iterative interpolation point cloud registration algorithm based on fast point feature histograms[J]. Journal of National University of Defense Technology, 36, 12-17(2014).

    [17] Pu S, Li J W, Guo S Q. Registration of terrestrial laser point clouds by fusing semantic features and GPS positions[J]. Acta Geodaetica et Cartographica Sinica, 43, 545-550(2014).

    [18] Yang B S, Dong Z, Liang F X et al. Automatic registration of large-scale urban scene point clouds based on semantic feature points[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 113, 43-58(2016). http://www.sciencedirect.com/science/article/pii/S092427161500266X

    [19] Tan Z G, Lu M, Guo Y L et al. Multi-view point cloud scenes mosaic based on projective distribution entropy[J]. Chinese Journal of Lasers, 39, 1114003(2012).

    [20] Shannon C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 5, 3-55(2001).

    [21] Brenner C, Dold C, Ripperda N. Coarse orientation of terrestrial laser scans in urban environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 63, 4-18(2008). http://www.sciencedirect.com/science/article/pii/S0924271607000457

    [22] Polewski P, Erickson A, Yao W, Remote Sensing, Spatial Information Sciences et al. III-, 3, 347-354(2016).

    [23] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 24, 381-395(1981). http://dl.acm.org/citation.cfm?id=358692

    Jianguo Liang, Maolin Chen, Hong Ma. Registration of Terrestrial Laser Scanning Data Based on Projection Distribution Entropy[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131501
    Download Citation