• Nano-Micro Letters
  • Vol. 16, Issue 1, 095 (2024)
Zhaosu Liu1, Si Yin Tee2, Guijian Guan1,*, and Ming-Yong Han1,**
Author Affiliations
  • 1Institute of Molecular Plus, Tianjin University, Tianjin 300072, People’s Republic of China
  • 2Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
  • show less
    DOI: 10.1007/s40820-023-01315-y Cite this Article
    Zhaosu Liu, Si Yin Tee, Guijian Guan, Ming-Yong Han. Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications[J]. Nano-Micro Letters, 2024, 16(1): 095 Copy Citation Text show less
    References

    [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    [2] Y. Gao, J. Chen, G. Chen, C. Fan, X. Liu, Recent progress in the transfer of graphene films and nanostructures. Small Methods 5, e2100771 (2021).

    [3] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    [4] Q. Zhang, X. Xiao, L. Li, D. Geng, W. Chen et al., Additive-assisted growth of scaled and quality 2D materials. Small 18, e2107241 (2022).

    [5] W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021).

    [6] Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 (2022).

    [7] L. Cheng, X. Wang, F. Gong, T. Liu, Z. Liu, 2D nanomaterials for cancer theranostic applications. Adv. Mater. 32, e1902333 (2020).

    [8] Y. Zhang, J. Mei, C. Yan, T. Liao, J. Bell et al., Bioinspired 2D nanomaterials for sustainable applications. Adv. Mater. 32, e1902806 (2020).

    [9] M. Wang, J. Zhu, Y. Zi, Z.-G. Wu, H. Hu et al., Functional two-dimensional black phosphorus nanostructures towards next-generation devices. J. Mater. Chem. A 9, 12433–12473 (2021).

    [10] Z. Wei, B. Li, C. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Method 2, 1800094 (2018).

    [11] S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, e2101589 (2021).

    [12] H.Y. Hoh, Y. Zhang, Y.L. Zhong, Q. Bao, Harnessing the potential of graphitic carbon nitride for optoelectronic applications. Adv. Opt. Mater. 9, 2100146 (2021).

    [13] W. Yu, K. Gong, Y. Li, B. Ding, L. Li et al., Flexible 2D materials beyond graphene: synthesis, properties, and applications. Small 18, e2105383 (2022).

    [14] H. Tian, J. Tice, R. Fei, V. Tran, X. Yan et al., Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today 11, 763–777 (2016).

    [15] R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel et al., Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance. J. Mater. Chem. A 2, 18480–18487 (2014).

    [16] J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5, 389–416 (2018).

    [17] C. Murugan, V. Sharma, R.K. Murugan, G. Malaimegu, A. Sundaramurthy, Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release 299, 1–20 (2019).

    [18] W. Wen, Y. Song, X. Yan, C. Zhu, D. Du et al., Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today 21, 164–177 (2018).

    [19] G. Guan, M.-Y. Han, Functionalized hybridization of 2D nanomaterials. Adv. Sci. 6, 1901837 (2019).

    [20] Y.-C. Lin, R. Torsi, D.B. Geohegan, J.A. Robinson, K. Xiao, Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 8, 2004249 (2021).

    [21] R. Wang, Y. Yu, S. Zhou, H. Li, H. Wong et al., Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 (2018).

    [22] G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low et al., Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 137, 6152–6155 (2015).

    [23] G. Guan, J. Xia, S. Liu, Y. Cheng, S. Bai et al., Electrostatic-driven exfoliation and hybridization of 2D nanomaterials. Adv. Mater. 29, 1700326 (2017).

    [24] S. Li, Y. Ma, N.A.N. Ouedraogo, F. Liu, C. You et al., P-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Res. 15, 123–144 (2022).

    [25] L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021).

    [26] Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917–1933 (2016).

    [27] X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185–2204 (2014).

    [28] Y. Zhao, K. Xu, F. Pan, C. Zhou, F. Zhou et al., Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 27, 1603484 (2017).

    [29] Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 13, 1593–1616 (2020).

    [30] S. Chen, D. Huang, M. Cheng, L. Lei, Y. Chen et al., Surface and interface engineering of two-dimensional bismuth-based photocatalysts for ambient molecule activation. J. Mater. Chem. A 9, 196–233 (2021).

    [31] X. Gan, D. Lei, R. Ye, H. Zhao, K.-Y. Wong, Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: dimensionality and interface engineering. Nano Res. 14, 2003–2022 (2021).

    [32] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

    [33] J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    [34] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law et al., Ising pairing in superconducting NbSe2 atomiclayers. Nat. Phys. 12, 139–143 (2016).

    [35] Y. Qi, P.G. Naumov, M.N. Ali, C.R. Rajamathi, W. Schnelle et al., Superconductivity in weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    [36] E. Navarro-Moratalla, J.O. Island, S. Mañas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez et al., Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).

    [37] X. Qian, J. Liu, L. Fu, J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    [38] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    [39] Y. Xiao, M. Zhou, J. Liu, J. Xu, L. Fu, Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62, 759–775 (2019).

    [40] X. Yuan, M. Yang, L. Wang, Y. Li, Structural stability and intriguing electronic properties of two-dimensional transition metal dichalcogenide alloys. Phys. Chem. Chem. Phys. 19, 13846–13854 (2017).

    [41] C. Gao, X. Yang, M. Jiang, L. Chen, Z. Chen et al., Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys. Phys. Chem. Chem. Phys. 24, 4653–4665 (2022).

    [42] Z. Shi, Q. Zhang, U. Schwingenschlögl, Alloying as a route to monolayer transition metal dichalcogenides with improved optoelectronic performance: Mo(S1–xSex)2 and Mo1–yWyS2. ACS Appl. Energy Mater. 1, 2208–2214 (2018).

    [43] M. Chen, L. Zhu, Q. Chen, N. Miao, C. Si et al., Quantifying the composition dependency of the ground-state structure, electronic property and phase-transition dynamics in ternary transition-metal-dichalcogenide monolayers. J. Mater. Chem. C 8, 721–733 (2020).

    [44] H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou et al., Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014).

    [45] Q. Deng, X. Li, H. Si, J. Hong, S. Wang et al., Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T’ phase-tunable MoxRe1–xS2 alloys. Adv. Funct. Mater. 30, 2003264 (2020).

    [46] X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou et al., Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016).

    [47] V. Kochat, A. Apte, J.A. Hachtel, H. Kumazoe, A. Krishnamoorthy et al., Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 29, 1703754 (2017).

    [48] P. Yu, J. Lin, L. Sun, Q.L. Le, X. Yu et al., Metal-semiconductor phase-transition in WSe2(1–x)Te2x monolayer. Adv. Mater. 29, 1603991 (2017).

    [49] Y. Deng, P. Li, C. Zhu, J. Zhou, X. Wang et al., Controlled synthesis of MoxW1−xTe2 atomic layers with emergent quantum states. ACS Nano 15, 11526–11534 (2021).

    [50] A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    [51] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er et al., Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    [52] H. Mo, X. Zhang, Y. Liu, P. Kang, H. Nan et al., Two-dimensional alloying molybdenum tin disulfide monolayers with fast photoresponse. ACS Appl. Mater. Interfaces 11, 39077–39087 (2019).

    [53] C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du et al., Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018).

    [54] I.S. Kwon, I.H. Kwak, T.T. Debela, J.Y. Kim, S.J. Yoo et al., Phase-transition Mo1−xVxSe2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano 15, 14672–14682 (2021).

    [55] I.H. Kwak, I.S. Kwon, T.T. Debela, H.G. Abbas, Y.C. Park et al., Phase evolution of Re1−xMoxSe2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 14, 11995–12005 (2020).

    [56] X. Liu, J. Wu, W. Yu, L. Chen, Z. Huang et al., Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors. Adv. Funct. Mater. 27, 1606469 (2017).

    [57] G. Shao, X.-X. Xue, B. Wu, Y.-C. Lin, M. Ouzounian et al., Template-assisted synthesis of metallic 1T’-Sn0.3W0.7S2 nanosheets for hydrogen evolution reaction. Adv. Funct. Mater. 30, 1906069 (2020).

    [58] X. Li, M.-W. Lin, L. Basile, S.M. Hus, A.A. Puretzky et al., Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 28, 8240–8247 (2016).

    [59] Q. Fu, L. Yang, W. Wang, A. Han, J. Huang et al., Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1−x)Se2x with a tunable band gap. Adv. Mater. 27, 4732–4738 (2015).

    [60] W.-J. Yin, H.-J. Tan, P.-J. Ding, B. Wen, X.-B. Li et al., Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater. Adv. 2, 7543–7558 (2021).

    [61] F. Raffone, C. Ataca, J.C. Grossman, G. Cicero, MoS2 enhanced T-phase stabilization and tunability through alloying. J. Phys. Chem. Lett. 7, 2304–2309 (2016).

    [62] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035–8041 (2015).

    [63] Y. Huang, H.-X. Deng, K. Xu, Z.-X. Wang, Q.-S. Wang et al., Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 7, 14093–14099 (2015).

    [64] P. Perumal, R.K. Ulaganathan, R. Sankar, Y.-M. Liao, T.-M. Sun et al., Ultra-thin layered ternary single crystals [Sn(SxSe1–x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater. 26, 3630–3638 (2016).

    [65] A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820–5825 (2014).

    [66] J. Kang, S. Tongay, J. Li, J. Wu, Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing. J. Appl. Phys. 113, 143703 (2013).

    [67] H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3, 3652–3656 (2012).

    [68] Z. Hemmat, J. Cavin, A. Ahmadiparidari, A. Ruckel, S. Rastegar et al., Quasi-binary transition metal dichalcogenide alloys: thermodynamic stability prediction, scalable synthesis, and application. Adv. Mater. 32, e1907041 (2020).

    [69] J.-H. Yang, B.I. Yakobson, Unusual negative formation enthalpies and atomic ordering in isovalent alloys of transition metal dichalcogenide monolayers. Chem. Mater. 30, 1547–1555 (2018).

    [70] M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini et al., Beyond atomic sizes and hume-rothery rules: understanding and predicting high-entropy alloys. JOM 67, 2350–2363 (2015).

    [71] H. Taghinejad, D.A. Rehn, C. Muccianti, A.A. Eftekhar, M. Tian et al., Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano 12, 12795–12804 (2018).

    [72] W. Yao, Z. Kang, J. Deng, Y. Chen, Q. Song et al., Synthesis of 2D MoS2(1–x)Se2x semiconductor alloy by chemical vapor deposition. RSC Adv. 10, 42172–42177 (2020).

    [73] Y. Tsai, Z. Chu, Y. Han, C.-P. Chuu, D. Wu et al., Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement. Adv. Mater. 29, 1703680 (2017).

    [74] B. Tang, J. Zhou, P. Sun, X. Wang, L. Bai et al., Phase-controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms. Adv. Mater. 31, e1900862 (2019).

    [75] J. Cavin, A. Ahmadiparidari, L. Majidi, A.S. Thind, S.N. Misal et al., 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 33, e2100347 (2021).

    [76] Y. Chen, Z. Tian, X. Wang, N. Ran, C. Wang et al., 2D transition metal dichalcogenide with increased entropy for piezoelectric electronics. Adv. Mater. 34, e2201630 (2022).

    [77] J. Lin, J. Zhou, S. Zuluaga, P. Yu, M. Gu et al., Anisotropic ordering in 1T’ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium. ACS Nano 12, 894–901 (2018).

    [78] D.O. Dumcenco, H. Kobayashi, Z. Liu, Y.-S. Huang, K. Suenaga, Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers. Nat. Commun. 4, 1351 (2013).

    [79] S. Susarla, P. Manimunda, Y.M. Jaques, J.A. Hachtel, J.C. Idrobo et al., Strain-induced structural deformation study of 2D MoxW(1–x)S2. Adv. Mater. Interfaces 6, 1801262 (2019).

    [80] C. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z. Zeng et al., Preparation of single-layer MoS2xSe2(1–x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016).

    [81] D. Hu, G. Xu, L. Xing, X. Yan, J. Wang et al., Two-dimensional semiconductors grown by chemical vapor transport. Angew. Chem. Int. Ed. 56, 3611–3615 (2017).

    [82] G.H. Han, D.L. Duong, D.H. Keum, S.J. Yun, Y.H. Lee, Van der waals metallic transition metal dichalcogenides. Chem. Rev. 118, 6297–6336 (2018).

    [83] Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5, 2213–2219 (2015).

    [84] Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan et al., Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014).

    [85] Z. Zheng, J. Yao, G. Yang, Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl. Mater. Interfaces 9, 14920–14928 (2017).

    [86] L. Zhang, T. Yang, X. He, W. Zhang, G. Vinai et al., Molecular beam epitaxy of two-dimensional vanadium-molybdenum diselenide alloys. ACS Nano 14, 11140–11149 (2020).

    [87] X. Hu, Z. Hemmat, L. Majidi, J. Cavin, R. Mishra et al., Controlling nanoscale thermal expansion of monolayer transition metal dichalcogenides by alloy engineering. Small 16, e1905892 (2020).

    [88] G.K. Solanki, D.N. Gujarathi, M.P. Deshpande, D. Lakshminarayana, M.K. Agarwal, Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique. Cryst. Res. Technol. 43, 179–185 (2008).

    [89] S.D. Karande, N. Kaushik, D.S. Narang, D. Late, S. Lodha, Thickness tunable transport in alloyed WSSe field effect transistors. Appl. Phys. Lett. 109, 142101 (2016).

    [90] F.I. Alzakia, S.C. Tan, Liquid-exfoliated 2D materials for optoelectronic applications. Adv. Sci. 8, e2003864 (2021).

    [91] S. Witomska, T. Leydecker, A. Ciesielski, P. Samorì, Production and patterning of liquid phase–exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 29, 1901126 (2019).

    [92] Z. Yang, H. Liang, X. Wang, X. Ma, T. Zhang et al., Atom-thin SnS2-xSex with adjustable compositions by direct liquid exfoliation from single crystals. ACS Nano 10, 755–762 (2016).

    [93] I.S. Kwon, I.H. Kwak, J.Y. Kim, T.T. Debela, Y.C. Park et al., Concurrent vacancy and adatom defects of Mo1-xNbxSe2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 15, 5467–5477 (2021).

    [94] I.H. Kwak, T.T. Debela, I.S. Kwon, J. Seo, S.J. Yoo et al., Anisotropic alloying of Re1−xMoxS2 nanosheets to boost the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 8, 25131–25141 (2020).

    [95] W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin et al., CVD synthesis of Mo(1–x)WxS2 and MoS2(1–x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554–13560 (2015).

    [96] Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018).

    [97] L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36–47 (2021).

    [98] L. Fang, S. Tao, Z. Tian, K. Liu, X. Li et al., Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration. Nano Res. 14, 2867–2874 (2021).

    [99] F. Chen, L. Wang, X. Ji, Q. Zhang, Temperature-dependent two-dimensional transition metal dichalcogenide heterostructures: controlled synthesis and their properties. ACS Appl. Mater. Interfaces 9, 30821–30831 (2017).

    [100] S. Susarla, V. Kochat, A. Kutana, J.A. Hachtel, J.C. Idrobo et al., Phase segregation behavior of two-dimensional transition metal dichalcogenide binary alloys induced by dissimilar substitution. Chem. Mater. 29, 7431–7439 (2017).

    [101] D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32, e2006320 (2020).

    [102] S.J. Yun, G.H. Han, H. Kim, D.L. Duong, B.G. Shin et al., Telluriding monolayer MoS2 and WS2 via alkali metal scooter. Nat. Commun. 8, 2163 (2017).

    [103] G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68, 1514–1521 (2023).

    [104] Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian et al., Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 (2022).

    [105] Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023).

    [106] J. Lee, S. Pak, Y.W. Lee, Y. Park, A.R. Jang et al., Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 13, 13047–13055 (2019).

    [107] X. Zhang, S. Xiao, L. Shi, H. Nan, X. Wan et al., Large-size Mo1-xWxS2 and W1-xMoxS2 (x = 0–0.5) monolayers by confined-space chemical vapor deposition. Appl. Surf. Sci. 457, 591–597 (2018).

    [108] K. Ding, Q. Fu, H. Nan, X. Gu, K. Ostrikov et al., Controllable synthesis of WS2(1–x)Se2x monolayers with fast photoresponse by a facile chemical vapor deposition strategy. Mater. Sci. Eng. B 269, 115176 (2021).

    [109] P. Kang, H. Nan, X. Zhang, H. Mo, Z. Ni et al., Controllable synthesis of crystalline ReS2(1–x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv. Opt. Mater. 8, 1901415 (2020).

    [110] Q. Feng, N. Mao, J. Wu, H. Xu, C. Wang et al., Growth of MoS2(1–x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015).

    [111] M.N. Bui, S. Rost, M. Auge, J.-S. Tu, L. Zhou et al., Low-energy Se ion implantation in MoS2 monolayers. NPJ 2D Mater. Appl. 6, 42 (2022).

    [112] S. Prucnal, A. Hashemi, M. Ghorbani-Asl, R. Hübner, J. Duan et al., Chlorine doping of MoSe2 flakes by ion implantation. Nanoscale 13, 5834–5846 (2021).

    [113] Q. Ma, M. Isarraraz, C.S. Wang, E. Preciado, V. Klee et al., Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 8, 4672–4677 (2014).

    [114] M. Ghorbani-Asl, S. Kretschmer, D.E. Spearot, A.V. Krasheninnikov, Two-dimensional MoS2 under ion irradiation: from controlled defect production to electronic structure engineering. 2D Mater. 4, 025078 (2017).

    [115] X. Kong, L. Liang, Floquet band engineering and topological phase transitions in 1T’ transition metal dichalcogenides. 2D Mater. 9, 025005 (2022).

    [116] J. Yao, Z. Zheng, G. Yang, Promoting the performance of layered-material photodetectors by alloy engineering. ACS Appl. Mater. Interfaces 8, 12915–12924 (2016).

    [117] J.G. Song, G.H. Ryu, S.J. Lee, S. Sim, C.W. Lee et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 6, 7817 (2015).

    [118] H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2020).

    [119] D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    [120] S.-Z. Yang, Y. Gong, P. Manchanda, Y.-Y. Zhang, G. Ye et al., Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 30, e1803477 (2018).

    [121] I.S. Kwon, I.H. Kwak, G.M. Zewdie, S.J. Lee, J.Y. Kim et al., WSe2-VSe2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano 16, 12569–12579 (2022).

    [122] K. Yang, X. Wang, H. Li, B. Chen, X. Zhang et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale 9, 5102–5109 (2017).

    [123] Z. Wang, Y. Shen, Y. Ito, Y. Zhang, J. Du et al., Synthesizing 1T–1H two-phase Mo1-xWxS2 monolayers by chemical vapor deposition. ACS Nano 12, 1571–1579 (2018).

    [124] Z. Wang, X. Zhao, Y. Yang, L. Qiao, L. Lv et al., Phase-controlled synthesis of monolayer W1–xRexS2 alloy with improved photoresponse performance. Small 16, e2000852 (2020).

    [125] Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    [126] I.H. Kwak, I.S. Kwon, G.M. Zewdie, T.T. Debela, S.J. Lee et al., Polytypic phase transition of Nb1- xVxSe2 via colloidal synthesis and their catalytic activity toward hydrogen evolution reaction. ACS Nano 16, 4278–4288 (2022).

    [127] K.Y. Ko, S. Lee, K. Park, Y. Kim, W.J. Woo et al., High-performance gas sensor using a large-area WS2xSe2-2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018).

    [128] Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga et al., Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610–4616 (2013).

    [129] M. Zhang, J. Wu, Y. Zhu, D.O. Dumcenco, J. Hong et al., Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014).

    [130] F. Cui, Q. Feng, J. Hong, R. Wang, Y. Bai et al., Synthesis of large-size 1T’ ReS2xSe2(1–x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater. 29, 1705015 (2017).

    [131] J. Kim, H. Seung, D. Kang, J. Kim, H. Bae et al., Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics. Nano Lett. 21, 9153–9163 (2021).

    [132] Y.-R. Lin, W.-H. Cheng, M.H. Richter, J.S. DuChene, E.A. Peterson et al., Band edge tailoring in few-layer two-dimensional molybdenum sulfide/selenide alloys. J. Phys. Chem. C 124, 22893–22902 (2020).

    [133] N. Tit, I.M. Obaidat, H. Alawadhi, Origins of bandgap bowing in compound-semiconductor common-cation ternary alloys. J. Phys. Condens. Matter 21, 075802 (2009).

    [134] L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS2(1–x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490–10497 (2015).

    [135] F. Liang, H. Xu, Z. Dong, Y. Xie, C. Luo et al., Substrates and interlayer coupling effects on Mo1–xWxSe2 alloys. J. Semicond. 40, 062005 (2019).

    [136] H. Masenda, L.M. Schneider, M. Adel Aly, S.J. Machchhar, A. Usman et al., Energy scaling of compositional disorder in ternary transition-metal dichalcogenide monolayers. Adv. Electron. Mater. 7, 2100196 (2021).

    [137] B. Aslan, I.M. Datye, M.J. Mleczko, K. Sze Cheung, S. Krylyuk et al., Probing the optical properties and strain-tuning of ultrathin Mo1−xWxTe2. Nano Lett. 18, 2485–2491 (2018).

    [138] W. Zheng, B. Zheng, C. Yan, Y. Liu, X. Sun et al., Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6, 1802204 (2019).

    [139] J. Wu, L. Xie, Structural quantification for graphene and related two-dimensional materials by Raman spectroscopy. Anal. Chem. 91, 468–481 (2019).

    [140] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).

    [141] C. Ramkumar, K.P. Jain, S.C. Abbi, Resonant Raman scattering probe of alloying effect in GaAs1-xPx ternary alloy semiconductors. Phys. Rev. B Condens. Matter 54, 7921–7928 (1996).

    [142] Y. Chen, D.O. Dumcenco, Y. Zhu, X. Zhang, N. Mao et al., Composition-dependent Raman modes of Mo1−xWxS2 monolayer alloys. Nanoscale 6, 2833–2839 (2014).

    [143] X. Gan, R. Lv, X. Wang, Z. Zhang, K. Fujisawa et al., Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon 132, 512–519 (2018).

    [144] Y. Sun, K. Fujisawa, Z. Lin, Y. Lei, J.S. Mondschein et al., Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017).

    [145] D. Wang, X. Zhang, G. Guo, S. Gao, X. Li et al., Large-area synthesis of layered HfS2(1–x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 30, e1803285 (2018).

    [146] A. Apte, A. Krishnamoorthy, J.A. Hachtel, S. Susarla, J.C. Idrobo et al., Telluride-based atomically thin layers of ternary two-dimensional transition metal dichalcogenide alloys. Chem. Mater. 30, 7262–7268 (2018).

    [147] A.T. Barton, R. Yue, L.A. Walsh, G. Zhou, C. Cormier et al., WSe(2–x)Tex alloys grown by molecular beam epitaxy. 2D Mater. 6, 045027 (2019).

    [148] Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, e1907818 (2021).

    [149] A.K. Chanchal, Garg, MREI-model calculations of optical phonons in layered mixed crystals of 2H-polytype of the series SnS2–xSex (0⩽x⩽2). Phys. B Condens. Matter 383, 188–193 (2006).

    [150] Y. Chen, W. Shockley, G.L. Pearson, Lattice vibration spectra of GaAsxP1-x single crystals. Phys. Rev. 151, 648–656 (1966).

    [151] I.F. Chang, S.S. Mitra, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 172, 924–933 (1968).

    [152] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    [153] A.R. Kim, Y. Kim, J. Nam, H.S. Chung, D.J. Kim et al., Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 16, 1890–1895 (2016).

    [154] A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    [155] B. Liu, Y. Ma, A. Zhang, L. Chen, A.N. Abbas et al., High-performance WSe2 field-effect transistors via controlled formation of In-plane heterojunctions. ACS Nano 10, 5153–5160 (2016).

    [156] H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15, 709–713 (2015).

    [157] K. Xu, A. Sharma, S. Kang, J. Kang, X. Hu et al., Heterogeneous electronic and photonic devices based on monolayer ternary telluride core/shell structures. Adv. Mater. 33, e2100343 (2021).

    [158] K.-C. Chen, C.-Y. Jian, Y.-J. Chen, S.-C. Lee, S.-W. Chang et al., Current enhancement and bipolar current modulation of top-gate transistors based on monolayer MoS2 on three-layer WxMo1−xS2. ACS Appl. Mater. Interfaces 10, 24733–24738 (2018).

    [159] V.T. Vu, T.T.H. Vu, T.L. Phan, W.T. Kang, Y.R. Kim et al., One-step synthesis of NbSe2/Nb-doped-WSe2 metal/doped-semiconductor van der waals heterostructures for doping controlled ohmic contact. ACS Nano 15, 13031–13040 (2021).

    [160] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    [161] H. Tian, M.L. Chin, S. Najmaei, Q. Guo, F. Xia et al., Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 9, 1543–1560 (2016).

    [162] H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    [163] Y.R. Lim, J.K. Han, Y. Yoon, J.B. Lee, C. Jeon et al., Atomic-level customization of 4 in transition metal dichalcogenide multilayer alloys for industrial applications. Adv. Mater. 31, e1901405 (2019).

    [164] H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS2(1–x)Se2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 12, 26 (2020).

    [165] P. Chauhan, G.K. Solanki, A.B. Patel, K. Patel, P. Pataniya et al., Tunable and anisotropic photoresponse of layered Re0.2Sn0.8Se2 ternary alloy. Sol. Energy Mater. Sol. Cells 200, 109936 (2019).

    [166] J. Ye, K. Liao, X. Ge, Z. Wang, Y. Wang et al., Narrowing bandgap of HfS2 by Te substitution for short-wavelength infrared photodetection. Adv. Opt. Mater. 9, 2002248 (2021).

    [167] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    [168] W. Xu, S. Li, S. Zhou, J.K. Lee, S. Wang et al., Large dendritic monolayer MoS2 grown by atmospheric pressure chemical vapor deposition for electrocatalysis. ACS Appl. Mater. Interfaces 10, 4630–4639 (2018).

    [169] Z. Lai, A. Chaturvedi, Y. Wang, T.H. Tran, X. Liu et al., Preparation of 1T’-phase ReS2xSe2(1–x) (x = 0–1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 140, 8563–8568 (2018).

    [170] Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O.O. Iyiola et al., Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11, 5103–5112 (2017).

    [171] J. Xu, X. Li, W. Liu, Y. Sun, Z. Ju et al., Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem. Int. Ed. 56, 9121–9125 (2017).

    [172] G. Shao, Y. Lu, J. Hong, X.-X. Xue, J. Huang et al., Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. 7, 2002172 (2020).

    [173] F. Li, W. Wei, H. Wang, B. Huang, Y. Dai et al., Intrinsic electric field-induced properties in Janus MoSSe van der waals structures. J. Phys. Chem. Lett. 10, 559–565 (2019).

    [174] T. Zheng, Y.-C. Lin, Y. Yu, P. Valencia-Acuna, A.A. Puretzky et al., Excitonic dynamics in Janus MoSSe and WSSe monolayers. Nano Lett. 21, 931–937 (2021).

    [175] H. Cai, Y. Guo, H. Gao, W. Guo, Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study. Nano Energy 56, 33–39 (2019).

    [176] C. Zhang, Y. Nie, S. Sanvito, A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 19, 1366–1370 (2019).

    [177] J. Liang, W. Wang, H. Du, A. Hallal, K. Garcia et al., Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 101, 184401 (2020).

    [178] A.C. Riis-Jensen, T. Deilmann, T. Olsen, K.S. Thygesen, Classifying the electronic and optical properties of Janus monolayers. ACS Nano 13, 13354–13364 (2019).

    [179] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt et al., The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).

    [180] M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021).

    [181] S. Zhang, X. Wang, Y. Wang, H. Zhang, B. Huang et al., Electronic properties of defective Janus MoSSe monolayer. J. Phys. Chem. Lett. 13, 4807–4814 (2022).

    [182] Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS Nano 14, 3896–3906 (2020).

    [183] X. Wan, E. Chen, J. Yao, M. Gao, X. Miao et al., Synthesis and characterization of metallic Janus MoSH monolayer. ACS Nano 15, 20319–20331 (2021).

    [184] C.-H. Yeh, Computational study of Janus transition metal dichalcogenide monolayers for acetone gas sensing. ACS Omega 5, 31398–31406 (2020).

    [185] S. Jia, A. Bandyopadhyay, H. Kumar, J. Zhang, W. Wang et al., Biomolecular sensing by surface-enhanced Raman scattering of monolayer Janus transition metal dichalcogenide. Nanoscale 12, 10723–10729 (2020).

    [186] W.-J. Yin, B. Wen, G.-Z. Nie, X.-L. Wei, L.-M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 6, 1693–1700 (2018).

    [187] M. Idrees, H.U. Din, R. Ali, G. Rehman, T. Hussain et al., Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 18612–18621 (2019).

    [188] S. Susarla, A. Kutana, J.A. Hachtel, V. Kochat, A. Apte et al., Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 29, 1702457 (2017).

    [189] C.-Z. Ning, L. Dou, P. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017).

    [190] I.S. Kwon, S.J. Lee, J.Y. Kim, I.H. Kwak, G.M. Zewdie et al., Composition-tuned (MoWV)Se2 ternary alloy nanosheets as excellent hydrogen evolution reaction electrocatalysts. ACS Nano 17, 2968–2979 (2023).

    [191] T. Joseph, M. Ghorbani-Asl, A.G. Kvashnin, K.V. Larionov, Z.I. Popov et al., Nonstoichiometric phases of two-dimensional transition-metal dichalcogenides: from chalcogen vacancies to pure metal membranes. J. Phys. Chem. Lett. 10, 6492–6498 (2019).

    [192] Z. Wang, R. Li, C. Su, K.P. Loh, Intercalated phases of transition metal dichalcogenides. SmartMat 1, e1013 (2020).

    [193] B. An, Y. Ma, F. Chu, X. Li, Y. Wu et al., Growth of centimeter scale Nb1−xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Res. 15, 2608–2615 (2022).

    [194] S. Park, S.J. Yun, Y.I. Kim, J.H. Kim, Y.M. Kim et al., Tailoring domain morphology in monolayer NbSe2 and WxNb1−xSe2 heterostructure. ACS Nano 14, 8784–8792 (2020).

    [195] X. Li, F. Cui, Q. Feng, G. Wang, X. Xu et al., Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8, 18956–18962 (2016).

    [196] F. Cui, X. Li, Q. Feng, J. Yin, L. Zhou et al., Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 10, 2732–2742 (2017).

    [197] G. Song, S. Cong, Z. Zhao, Defect engineering in semiconductor-based SERS. Chem. Sci. 13, 1210–1224 (2021).

    [198] S.G. Yi, S.H. Kim, S. Park, D. Oh, H.Y. Choi et al., Mo1-xWxSe2-based Schottky junction photovoltaic cells. ACS Appl. Mater. Interfaces 8, 33811–33820 (2016).

    [199] K.C. Kwon, T.H. Lee, S. Choi, K.S. Choi, S.O. Gim et al., Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes. Appl. Surf. Sci. 541, 148529 (2021).

    [200] R. Yang, L. Liu, S. Feng, Y. Liu, S. Li et al., One-step growth of spatially graded Mo1−xWxS2 monolayers with a wide span in composition (from x = 0 to 1) at a large scale. ACS Appl. Mater. Interfaces 11, 20979–20986 (2019).

    Zhaosu Liu, Si Yin Tee, Guijian Guan, Ming-Yong Han. Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications[J]. Nano-Micro Letters, 2024, 16(1): 095
    Download Citation