• Photonics Research
  • Vol. 13, Issue 4, 905 (2025)
Stella T. Schindler1,2,4 and Hanan Herzig Sheinfux3,*
Author Affiliations
  • 1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  • 2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 3Physics Department, Bar-Ilan University, Ramat Gan 5290002, Israel
  • 4e-mail: schindler@lanl.gov
  • show less
    DOI: 10.1364/PRJ.545282 Cite this Article Set citation alerts
    Stella T. Schindler, Hanan Herzig Sheinfux, "Floquet engineering with spatially nonuniform driving fields," Photonics Res. 13, 905 (2025) Copy Citation Text show less
    References

    [1] P. L. Kapitza. A pendulum with oscillating suspension. Usp. Fiz. Nauk, 44, 7-20(1951).

    [2] D. J. Thouless. Quantization of particle transport. Phys. Rev. B, 27, 6083-6087(1983).

    [3] Q. Niu, D. J. Thouless. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A, 17, 2453-2462(1984).

    [4] D. H. Dunlap, V. M. Kenkre. Dynamic localization of a charged particle moving under the influence of an electric field. Phys. Rev. B, 34, 3625-3633(1986).

    [5] F. Grossmann, T. Dittrich, P. Jung. Coherent destruction of tunneling. Phys. Rev. Lett., 67, 516-519(1991).

    [6] K. W. Madison, M. C. Fischer, R. B. Diener. Dynamical Bloch band suppression in an optical lattice. Phys. Rev. Lett., 81, 5093-5096(1998).

    [7] M. Grifoni, P. Hänggi. Driven quantum tunneling. Phys. Rep., 304, 229-354(1998).

    [8] H. Lignier, J. Chabé, D. Delande. Reversible destruction of dynamical localization. Phys. Rev. Lett., 95, 234101(2005).

    [9] A. Eckardt, C. Weiss, M. Holthaus. Superfluid-insulator transition in a periodically driven optical lattice. Phys. Rev. Lett., 95, 260404(2005).

    [10] S. Longhi, M. Marangoni, M. Lobino. Observation of dynamic localization in periodically curved waveguide arrays. Phys. Rev. Lett., 96, 243901(2006).

    [11] H. Lignier, C. Sias, D. Ciampini. Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett., 99, 220403(2007).

    [12] E. Kierig, U. Schnorrberger, A. Schietinger. Single-particle tunneling in strongly driven double-well potentials. Phys. Rev. Lett., 100, 190405(2008).

    [13] A. Eckardt, M. Holthaus, H. Lignier. Exploring dynamic localization with a Bose-Einstein condensate. Phys. Rev. A, 79, 013611(2009).

    [14] A. Szameit, I. L. Garanovich, M. Heinrich. Polychromatic dynamic localization in curved photonic lattices. Nat. Phys., 5, 271-275(2009).

    [15] A. Szameit, I. L. Garanovich, M. Heinrich. Observation of two-dimensional dynamic localization of light. Phys. Rev. Lett., 104, 223903(2010).

    [16] J. Struck, C. Ölschläger, M. Weinberg. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett., 108, 225304(2012).

    [17] J. Struck, M. Weinberg, C. Ölschläger. Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nat. Phys., 9, 738-743(2013).

    [18] L. Yuan, S. Fan. Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons. Phys. Rev. Lett., 114, 243901(2015).

    [19] T. Oka, H. Aoki. Photovoltaic Hall effect in graphene. Phys. Rev. B, 79, 081406(2009).

    [20] T. Kitagawa, T. Oka, A. Brataas. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B, 84, 235108(2011).

    [21] N. H. Lindner, G. Refael, V. Galitski. Floquet topological insulator in semiconductor quantum wells. Nat. Phys., 7, 490-495(2011).

    [22] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero. Observation of Floquet-Bloch states on the surface of a topological insulator. Science, 342, 453-457(2013).

    [23] J.-Y. Shan, M. Ye, H. Chu. Giant modulation of optical nonlinearity by Floquet engineering. Nature, 600, 235-239(2021).

    [24] S. Zhou, C. Bao, B. Fan. Pseudospin-selective Floquet band engineering in black phosphorus. Nature, 614, 75-80(2023).

    [25] M. Aidelsburger, M. Atala, M. Lohse. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 111, 185301(2013).

    [26] H. Miyake, G. A. Siviloglou, C. J. Kennedy. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett., 111, 185302(2013).

    [27] G. Jotzu, M. Messer, R. Desbuquois. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 515, 237-240(2014).

    [28] S. Rahav, I. Gilary, S. Fishman. Effective Hamiltonians for periodically driven systems. Phys. Rev. A, 68, 013820(2003).

    [29] N. Goldman, J. Dalibard. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X, 4, 031027(2014).

    [30] D. A. Abanin, W. De Roeck, F. M. C. Huveneers. Exponentially slow heating in periodically driven many-body systems. Phys. Rev. Lett., 115, 256803(2015).

    [31] T. E. Lee. Floquet engineering from long-range to short-range interactions. Phys. Rev. A, 94, 040701(2016).

    [32] J. Choi, H. Zhou, H. S. Knowles. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X, 10, 031002(2020).

    [33] G. Lenz, I. Talanina, C. M. de Sterke. Bloch oscillations in an array of curved optical waveguides. Phys. Rev. Lett., 83, 963-966(1999).

    [34] S. Longhi, G. Della Valle, M. Ornigotti. Coherent tunneling by adiabatic passage in an optical waveguide system. Phys. Rev. B, 76, 201101(2007).

    [35] A. Joushaghani, R. Iyer, J. K. S. Poon. Quasi-Bloch oscillations in curved coupled optical waveguides. Phys. Rev. Lett., 103, 143903(2009).

    [36] I. L. Garanovich, S. Longhi, A. A. Sukhorukov. Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep., 518, 1-79(2012).

    [37] Y. Plotnik, M. A. Bandres, S. Stützer. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering. Phys. Rev. B, 94, 020301(2016).

    [38] M. Minkov, V. Savona. Haldane quantum Hall effect for light in a dynamically modulated array of resonators. Optica, 3, 200-206(2016).

    [39] D. L. Sounas, A. Alù. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774-783(2017).

    [40] P. A. Huidobro, E. Galiffi, S. Guenneau. Fresnel drag in space–time-modulated metamaterials. Proc. Natl. Acad. Sci. USA, 116, 24943-24948(2019).

    [41] S. Yin, E. Galiffi, A. Alù. Floquet metamaterials. eLight, 2, 8(2022).

    [42] K. Fang, Z. Yu, S. Fan. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett., 108, 153901(2012).

    [43] K. Fang, Z. Yu, S. Fan. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics, 6, 782-787(2012).

    [44] M. S. Rudner, N. H. Lindner, E. Berg. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 3, 031005(2013).

    [45] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [46] L. D. Tzuang, K. Fang, P. Nussenzveig. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photonics, 8, 701-705(2014).

    [47] T. Ozawa, H. M. Price, N. Goldman. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum hall physics. Phys. Rev. A, 93, 043827(2016).

    [48] L. Yuan, Y. Shi, S. Fan. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett., 41, 741-744(2016).

    [49] E. Lustig, S. Weimann, Y. Plotnik. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [50] A. Castro, U. De Giovannini, S. A. Sato. Floquet engineering the band structure of materials with optimal control theory. Phys. Rev. Res., 4, 033213(2022).

    [51] T. V. Trevisan, P. V. Arribi, O. Heinonen. Bicircular light Floquet engineering of magnetic symmetry and topology and its application to the Dirac semimetal Cd3As2. Phys. Rev. Lett., 128, 066602(2022).

    [52] A. Geyer, O. Neufeld, D. Trabert. Quantum correlation of electron and ion energy in the dissociative strong-field ionization of H2. Phys. Rev. Res., 5, 013123(2023).

    [53] Y. Wang, A.-S. Walter, G. Jotzu. Topological Floquet engineering using two frequencies in two dimensions. Phys. Rev. A, 107, 043309(2023).

    [54] O. Neufeld, H. Hübener, U. D. Giovannini. Tracking electron motion within and outside of Floquet bands from attosecond pulse trains in time-resolved ARPES. J. Phys.: Condens. Matter, 36, 225401(2024).

    [55] S. Mitra, Á. Jiménez-Galán, M. Aulich. Light-wave-controlled Haldane model in monolayer hexagonal boron nitride. Nature, 628, 752-757(2024).

    [56] Y. T. Katan, D. Podolsky. Modulated Floquet topological insulators. Phys. Rev. Lett., 110, 016802(2013).

    [57] S. Morina, K. Dini, I. V. Iorsh. Optical trapping of electrons in graphene. ACS Photon., 5, 1171-1175(2018).

    [58] Y. Sharabi, A. Dikopoltsev, E. Lustig. Spatiotemporal photonic crystals. Optica, 9, 585-592(2022).

    [59] Y. Peng. Topological space-time crystal. Phys. Rev. Lett., 128, 186802(2022).

    [60] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492-1505(1958).

    [61] H. De Raedt, A. Lagendijk, P. de Vries. Transverse localization of light. Phys. Rev. Lett., 62, 47-50(1989).

    [62] D. S. Wiersma, P. Bartolini, A. Lagendijk. Localization of light in a disordered medium. Nature, 390, 671-673(1997).

    [63] T. Schwartz, G. Bartal, S. Fishman. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature, 446, 52-55(2007).

    [64] L. Sanchez-Palencia, D. Clément, P. Lugan. Anderson localization of expanding Bose-Einstein condensates in random potentials. Phys. Rev. Lett., 98, 210401(2007).

    [65] H. Hu, A. Strybulevych, J. H. Page. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys., 4, 945-948(2008).

    [66] Y. Lahini, A. Avidan, F. Pozzi. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett., 100, 013906(2008).

    [67] A. Lagendijk, B. V. Tiggelen, D. S. Wiersma. Fifty years of Anderson localization. Phys. Today, 62, 24-29(2009).

    [68] L. Martin, G. D. Giuseppe, A. Perez-Leija. Anderson localization in optical waveguide arrays with off-diagonal coupling disorder. Opt. Express, 19, 13636-13646(2011).

    [69] S. S. Kondov, W. R. McGehee, J. J. Zirbel. Three-dimensional Anderson localization of ultracold matter. Science, 334, 66-68(2011).

    [70] S. Karbasi, R. J. Frazier, K. W. Koch. Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nat. Commun., 5, 3362(2014).

    [71] W. Magnus. On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math., 7, 649-673(1954).

    [72] L. D. Marin Bukov, A. Polkovnikov. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys., 64, 139-226(2015).

    [73] A. Eckardt. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys., 89, 011004(2017).

    [74] T. Oka, S. Kitamura. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 10, 387-408(2019).

    [75] T. Mikami, S. Kitamura, K. Yasuda. Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: application to Floquet topological insulators. Phys. Rev. B, 93, 144307(2016).

    [76] A. Eckardt, E. Anisimovas. High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective. New J. Phys., 17, 093039(2015).

    [77] T. Kuwahara, T. Mori, K. Saito. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys., 367, 96-124(2016).

    [78] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [79] A. Ruschhaupt, F. Delgado, J. G. Muga. Physical realization of PT-symmetric potential scattering in a planar slab waveguide. J. Phys. A, 38, L171-L176(2005).

    [80] R. El-Ganainy, K. G. Makris, D. N. Christodoulides. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [81] A. Guo, G. J. Salamo, D. Duchesne. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).

    [82] C. E. Rüter, K. G. Makris, R. El-Ganainy. Observation of parity–time symmetry in optics. Nat. Phys., 6, 192-195(2010).

    [83] M. Segev, Y. Silberberg, D. N. Christodoulides. Anderson localization of light. Nat. Photonics, 7, 197-204(2013).

    [84] L. Levi, Y. Krivolapov, S. Fishman. Hyper-transport of light and stochastic acceleration by evolving disorder. Nat. Phys., 8, 912-917(2012).

    [85] S. Longhi, A. Szameit. Dynamic localization in Glauber-Fock lattices. J. Phys. Condens. Matter., 25, 035603(2012).

    [86] M. Rodriguez-Vega, M. Vogl, G. A. Fiete. Low-frequency and moiré-Floquet engineering: a review. Ann. Phys., 435, 168434(2021).

    [87] H. H. Sheinfux, S. Schindler, Y. Lumer. Recasting Hamiltonians with gauged-driving. Conference on Lasers and Electro-Optics (CLEO), 1-2(2017).