[2] Fu K, Peng J, He Q, et al. Single image 3D object reconstruction based on deep learning: A review[J]. Multimedia Tools and Applications, 2021, 80(1): 463-498.
[3] Choy C B, Xu D, Gwak J Y, et al. 3dr2n2: A unified approach for single and multi-view 3d object reconstruction[C]// European Conf. on Computer Vision, 2016: 628-644.
[4] Yang B, Wang S, Markham A, et al. Robust attentional aggregation of deep feature sets for multi-view 3D reconstruction[J]. Inter. J. of Computer Vision, 2020, 128(1): 53-73.
[5] Mescheder L, Oechsle M, Niemeyer M, et al. Occupancy networks: Learning 3d reconstruction in function space[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 4460-4470.
[6] Xie H, Yao H, Sun X, et al. Pix2vox: Context-aware 3d reconstruction from single and multi-view images[C]// Proc. of the IEEE/CVF Inter. Conf. on Computer Vision, 2019: 2690-2698.
[7] Xie H, Yao H, Zhang S, et al. Pix2Vox++: multi-scale context-aware 3D object reconstruction from single and multiple images[J]. Inter. J. of Computer Vision, 2020, 128(12): 2919-2935.
[8] Graham B, Engelcke M, Van Der Maaten L. 3d semantic segmentation with submanifold sparse convolutional networks[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 9224-9232.
[9] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016: 770-778.
[10] Wu J, Wang Y, Xue T, et al. Marrnet: 3d shape reconstruction via 2.5d sketches[J]. Adv. in Neural Information Processing Systems, 2017, 30: 540-550.
[11] Rahman M A, Wang Y. Optimizing intersection-over-union indeep neural networks for image segmentation[C]// Inter. Symp. on Visual Computing, 2016: 234-244.
[12] Lorensen W E, Cline H E. Marching cubes: A high resolution 3D surface construction algorithm[J]. ACM Siggraph Computer Graphics, 1987, 21(4): 163-169.