[2] Kreder M J, Alvarenga J, Kim P et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 1, 15003(2016).
[3] Golovin K. Kobaku S P R, Lee D H, et al. Designing durable icephobic surfaces[J]. Science Advances, 2, e1501496(2016).
[4] Guo P, Zheng Y M, Wen M X et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Advanced Materials, 24, 2642-2648(2012).
[5] Wang F, Xiao S B, Zhuo Y Z et al. Liquid layer generators for excellent icephobicity at extremely low temperatures[J]. Materials Horizons, 6, 2063-2072(2019).
[8] Yu F[J]. Diversification development strategy and path of anti-icing system technology for aircraft Civil Aircraft Design & Research, 2020, 38-43.
[9] Wei D C, Zhang G X, Chen Y B. Effects of air-gap on the temperature rise characteristics of AC-SDBD actuator anti-icing and deicing actuator under high frequency[J]. Acta Aeronautica et Astronautica Sinica, 42, 124195(2021).
[11] Wang Y Y, Xue J, Wang Q J et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces, 5, 3370-3381(2013).
[12] Cui W J, Jiang Y, Mielonen K et al. The verification of icephobic performance on biomimetic superhydrophobic surfaces and the effect of wettability and surface energy[J]. Applied Surface Science, 466, 503-514(2019).
[13] Kim P, Wong T S, Alvarenga J et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 6, 6569-6577(2012).
[15] Golovin K, Tuteja A. A predictive framework for the design and fabrication of icephobic polymers[J]. Science Advances, 3, e1701617(2017).
[17] Hao P F, Lv C, Niu F L et al. Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness[J]. Science China Physics, Mechanics & Astronomy, 57, 1376-1381(2014).
[18] Zhang R, Hao P F, Zhang X W et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 122, 395-402(2018).
[19] Hao Q Y, Pang Y C, Zhao Y et al. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing[J]. Langmuir, 30, 15416-15422(2014).
[21] Boreyko J B, Collier C P. Delayed frost growth on jumping-drop superhydrophobic surfaces[J]. ACS Nano, 7, 1618-1627(2013).
[22] Vahabi H, Wang W, Mabry J M et al. 4(11): eaau3488(2018).
[24] Bahadur V, Mishchenko L, Hatton B et al. Predictive model for ice formation on superhydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 27, 14143-14150(2011).
[25] Yan Y D, Luo N Z, Xiang X G et al. Fabricating mechanism and preparation of anti-icing & icephobic coating[J]. Progress in Chemistry, 26, 214-222(2014).
[27] Wen Q Y, Guo Z G. Recent advances in the fabrication of superhydrophobic surfaces[J]. Chemistry Letters, 45, 1134-1149(2016).
[28] Han J P, Cai M Y, Lin Y et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 456, 726-736(2018).
[29] Han J P, Cai M Y, Lin Y et al. Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures[J]. RSC Advances, 8, 6733-6744(2018).
[34] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).
[35] Yan X, Chen F, Sett S et al. Hierarchical condensation[J]. ACS Nano, 13, 8169-8184(2019).
[36] Pan R, Cai M Y, Liu W J et al. Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures[J]. Journal of Materials Chemistry A, 7, 18050-18062(2019).
[37] Pan R, Cai M Y, Liu W J et al. Ultrafast laser hybrid fabrication of hierarchical 3D structures of nanorods on microcones for superhydrophobic surfaces with excellent Cassie state stability and mechanical durability[J]. Journal of Laser Applications, 32, 022047(2020).
[38] Meuler A J. McKinley G H, Cohen R E. Exploiting topographical texture to impart icephobicity[J]. ACS Nano, 4, 7048-7052(2010).
[39] Meuler A J, Smith J D, Varanasi K K et al. Relationships between water wettability and ice adhesion[J]. ACS Applied Materials & Interfaces, 2, 3100-3110(2010).