• Chinese Journal of Lasers
  • Vol. 48, Issue 2, 0202009 (2021)
Rui Pan1,2, Hongjun Zhang1,2, and Minlin Zhong1,2,*
Author Affiliations
  • 1Laser Materials Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0202009 Cite this Article Set citation alerts
    Rui Pan, Hongjun Zhang, Minlin Zhong. Ultrafast Laser Hybrid Fabrication and Ice-Resistance Performance of a Triple-Scale Micro/Nano Superhydrophobic Surface[J]. Chinese Journal of Lasers, 2021, 48(2): 0202009 Copy Citation Text show less
    References

    [1] Irajizad P, Al-Bayati A, Eslami B et al. Stress-localized durable icephobic surfaces[J]. Materials Horizons, 6, 758-766(2019). http://www.onacademic.com/detail/journal_1000041603223399_822c.html

    [2] Kreder M J, Alvarenga J, Kim P et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 1, 15003(2016).

    [3] Golovin K. Kobaku S P R, Lee D H, et al. Designing durable icephobic surfaces[J]. Science Advances, 2, e1501496(2016).

    [4] Guo P, Zheng Y M, Wen M X et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Advanced Materials, 24, 2642-2648(2012).

    [5] Wang F, Xiao S B, Zhuo Y Z et al. Liquid layer generators for excellent icephobicity at extremely low temperatures[J]. Materials Horizons, 6, 2063-2072(2019).

    [6] Jin M M, Shen Y Z, Luo X Y et al. A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity[J]. Applied Surface Science, 455, 883-890(2018). http://www.sciencedirect.com/science/article/pii/S0169433218316106

    [7] Long J Y, Wu Y C, Gong D W et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 42, 0706002(2015).

    [8] Yu F[J]. Diversification development strategy and path of anti-icing system technology for aircraft Civil Aircraft Design & Research, 2020, 38-43.

    [9] Wei D C, Zhang G X, Chen Y B. Effects of air-gap on the temperature rise characteristics of AC-SDBD actuator anti-icing and deicing actuator under high frequency[J]. Acta Aeronautica et Astronautica Sinica, 42, 124195(2021).

    [10] Nosonovsky M, Hejazi V. Why superhydrophobic surfaces are not always icephobic[J]. ACS Nano, 6, 8488-8491(2012). http://www.ncbi.nlm.nih.gov/pubmed/23009385

    [11] Wang Y Y, Xue J, Wang Q J et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces, 5, 3370-3381(2013).

    [12] Cui W J, Jiang Y, Mielonen K et al. The verification of icephobic performance on biomimetic superhydrophobic surfaces and the effect of wettability and surface energy[J]. Applied Surface Science, 466, 503-514(2019).

    [13] Kim P, Wong T S, Alvarenga J et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 6, 6569-6577(2012).

    [14] Golovin K, Dhyani A, Thouless M D et al. Low-interfacial toughness materials for effective large-scale deicing[J]. Science, 364, 371-375(2019). http://www.ncbi.nlm.nih.gov/pubmed/31023920

    [15] Golovin K, Tuteja A. A predictive framework for the design and fabrication of icephobic polymers[J]. Science Advances, 3, e1701617(2017).

    [16] Bird J C, Dhiman R, Kwon H M et al. Reducing the contact time of a bouncing drop[J]. Nature, 503, 385-388(2013).

    [17] Hao P F, Lv C, Niu F L et al. Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness[J]. Science China Physics, Mechanics & Astronomy, 57, 1376-1381(2014).

    [18] Zhang R, Hao P F, Zhang X W et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 122, 395-402(2018).

    [19] Hao Q Y, Pang Y C, Zhao Y et al. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing[J]. Langmuir, 30, 15416-15422(2014).

    [20] Peng Q, Jia L, Guo J et al. Forced jumping and coalescence-induced sweeping enhanced the dropwise condensation on hierarchically microgrooved superhydrophobic surface[J]. Applied Physics Letters, 114, 133106(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112960688.html

    [21] Boreyko J B, Collier C P. Delayed frost growth on jumping-drop superhydrophobic surfaces[J]. ACS Nano, 7, 1618-1627(2013).

    [22] Vahabi H, Wang W, Mabry J M et al. 4(11): eaau3488(2018).

    [23] Zhang Q L, He M, Chen J et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets[J]. Chemical Communications, 49, 4516-4518(2013).

    [24] Bahadur V, Mishchenko L, Hatton B et al. Predictive model for ice formation on superhydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 27, 14143-14150(2011).

    [25] Yan Y D, Luo N Z, Xiang X G et al. Fabricating mechanism and preparation of anti-icing & icephobic coating[J]. Progress in Chemistry, 26, 214-222(2014).

    [26] Xu J H, Li M, Zhao Y et al. Advance of wetting behavior research on the superhydrophobic surface with micro-and nano-structures[J]. Progress in Chemistry, 18, 1425-1433(2006).

    [27] Wen Q Y, Guo Z G. Recent advances in the fabrication of superhydrophobic surfaces[J]. Chemistry Letters, 45, 1134-1149(2016).

    [28] Han J P, Cai M Y, Lin Y et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 456, 726-736(2018).

    [29] Han J P, Cai M Y, Lin Y et al. Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures[J]. RSC Advances, 8, 6733-6744(2018).

    [30] Long J Y, Fan P X, Gong D W et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 43, 0800001(2016).

    [31] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

    [32] Cheng J, Cao J L, Zhang H C et al. Preparation of pump-free transport trajectory on infiltration controllable surface using ultrafast laser[J]. Chinese Journal of Lasers, 46, 1102012(2019).

    [33] Jiang G C, Pan R, Chen C H et al. Ultrafast laser fabricated drag reduction micro-nano structures and their corrosion resistance[J]. Chinese Journal of Lasers, 47, 0802005(2020).

    [34] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).

    [35] Yan X, Chen F, Sett S et al. Hierarchical condensation[J]. ACS Nano, 13, 8169-8184(2019).

    [36] Pan R, Cai M Y, Liu W J et al. Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures[J]. Journal of Materials Chemistry A, 7, 18050-18062(2019).

    [37] Pan R, Cai M Y, Liu W J et al. Ultrafast laser hybrid fabrication of hierarchical 3D structures of nanorods on microcones for superhydrophobic surfaces with excellent Cassie state stability and mechanical durability[J]. Journal of Laser Applications, 32, 022047(2020).

    [38] Meuler A J. McKinley G H, Cohen R E. Exploiting topographical texture to impart icephobicity[J]. ACS Nano, 4, 7048-7052(2010).

    [39] Meuler A J, Smith J D, Varanasi K K et al. Relationships between water wettability and ice adhesion[J]. ACS Applied Materials & Interfaces, 2, 3100-3110(2010).

    Rui Pan, Hongjun Zhang, Minlin Zhong. Ultrafast Laser Hybrid Fabrication and Ice-Resistance Performance of a Triple-Scale Micro/Nano Superhydrophobic Surface[J]. Chinese Journal of Lasers, 2021, 48(2): 0202009
    Download Citation