• Matter and Radiation at Extremes
  • Vol. 4, Issue 5, 054402 (2019)
S. N. Chen1,2, F. Negoita1, K. Spohr1, E. d’Humières3..., I. Pomerantz4 and J. Fuchs2,5,a)|Show fewer author(s)
Author Affiliations
  • 1ELI-NP, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Bucharest-Magurele, Romania
  • 2Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
  • 3Université Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405 Talence, France
  • 4School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
  • 5LULI–CNRS, Ecole Polytechnique, CEA; Université Paris-Saclay; UPMC Université Paris 06; Sorbonne Université, F-91128 Palaiseau cedex, France
  • show less
    DOI: 10.1063/1.5081666 Cite this Article
    S. N. Chen, F. Negoita, K. Spohr, E. d’Humières, I. Pomerantz, J. Fuchs. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory[J]. Matter and Radiation at Extremes, 2019, 4(5): 054402 Copy Citation Text show less
    References

    [1] M. Arnould et al. The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries. Phys. Rep., 450, 97(2007).

    [2] C. Lederer et al. Experiments with neutron beams for the astrophysical s process. J. Phys.: Conf. Ser., 665, 012020(2016).

    [3] E. M. Burbidge et al. Synthesis of the elements in stars. Rev. Mod. Phys., 29, 547(1957).

    [4] R. Reifarth et al. Neutron reactions in astrophysics. J. Phys. G: Nucl. Part. Phys., 41, 053101(2014).

    [5] U. Ratzel et al. Nucleosynthesis at the termination point of the s-process. Phys. Rev. C, 70, 065803(2004).

    [6] J. J. Cowan et al. R-process nucleosynthesis in dynamic helium-burning environments. Astrophys. J., 294, 656(1985).

    [7] F.-K. Thielemann et al. What are the astrophysical sites for the r-process and the production of heavy elements?. Progr. Part. Nucl. Phys., 66, 346-353(2011).

    [8] N. R. Tanvir et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature, 500, 547(2013).

    [9] W. R. Binns et al. Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays. Science, 352, 677(2016).

    [10] A. P. Ji et al. R-process enrichment from a single event in an ancient dwarf galaxy. Nature, 531, 610(2016).

    [11] G. M. Fuller et al. Primordial black holes and r-process nucleosynthesis. Phys. Rev. Lett., 119, 061101(2017).

    [12] C. J. Horowitz et al. r-process nucleosynthesis: Connecting rare-isotope beam facilities with the cosmos. J. Phys. G: Nucl. Part. Phys., 46, 83001(2019).

    [13] B. P. Abbott et al. GW170817: Observation of gravitational waves from a binary neutron star in spiral. Phys. Rev. Lett., 119, 161101(2017).

    [14] E. Pian et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 551, 67(2017).

    [15] J. Barnes, D. Kasen, B. Metzger, E. Quataert, E. Ramirez-Ruiz. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature, 551, 80(2017).

    [16] H. Diamond et al. Heavy isotope abundances in Mike thermonuclear device. Phys. Rev., 119, 2000(1960).

    [17] Y. Lutostansky, V. I. Lyashuk. Transuranium elements production in pulse neutron fluxes, 164-168(2012).

    [18] M. R. Mumpower et al. The impact of individual nuclear properties on r-process nucleosynthesis. Prog. Part. Nucl. Phys., 86, 86(2016).

    [19] G. Feinberg et al. LiLiT-a liquid-lithium target as an intense neutron source for nuclear astrophysics at the soreq applied research accelerator facility. Nucl. Phys. A, 827, 590c(2009).

    [20] O. A. Hurricane et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [21] Y. A. Litvinov, R. Reifarth. Measurements of neutron-induced reactions in inverse kinematics. Phys. Rev. Spec. Top. - Accel. Beams, 17, 014701(2014).

    [22] I. V. Panov. Nucleosynthesis of heavy elements in the r-process. Phys. At. Nucl., 79, 159-198(2016).

    [23] H.-T. Janka et al. Physics of core-collapse supernovae in three dimensions: A sneak preview. Annu. Rev. Nucl. Part. Sci., 66, 341-375(2016).

    [24] T. Rauscher. Revision of the derivation of stellar rates from experiment and impact on Eu s-process contributions. J. Phys.: Conf. Ser., 665, 012024(2016).

    [25] N. Nishimura et al. Impact of new β-decay half-lives on r-process nucleosynthesis. Phys. Rev. C, 85, 048801(2012).

    [26] G. Gosselin, I. Kucuk et al. Nuclear excitation processes in astrophysical plasmas. Astrophysics(2012).

    [27] J. N. Ávila et al. Europium s-process signature at close-to-solar metallicity in stardust SiC grains from asymptotic giant branch stars. Astrophys. J. Lett., 768, L18(2013).

    [28] T. Rauscher. Formalism for inclusion of measured reaction cross sections in stellar rates including uncertainties and its application to neutron capture in the s-process. Astrophys. J. Lett., 755, L10(2012).

    [29] G. Gosselin et al. Enhanced nuclear level decay in hot dense plasmas. Phys. Rev. C, 70, 064603(2004).

    [30] A. V. Andreev et al. Excitation and decay of low-lying nuclear states in a dense plasma produced by a subpicosecond laser pulse. J. Exp. Theor. Phys., 91, 1163(2000).

    [31] G. Gosselin et al. Modified nuclear level lifetime in hot dense plasmas. Phys. Rev. C, 76, 044611(2007).

    [32] S. Goriely. Nuclear reaction data relevant to nuclear astrophysics. J. Nucl. Sci. Tech., 39, 536(2002).

    [33] T. Rauscher et al. Opportunities to constrain astrophysical reaction rates for the s-process via determination of the ground-state cross-sections. Astrophys. J., 738, 143(2011).

    [34] F. Raiola et al. First hint on a change of the 210Po alpha-decay half-life in the metal Cu. Eur. Phys. J. A, 32, 51(2007).

    [35] K. Takahashi, K. Yokoi. Beta-decay rates of highly ionized heavy atoms in stellar interiors. At. Data Nucl. Data Tables, 36, 375(1987).

    [36] F. Bosch et al. Observation of bound-state β-decay of fully ionized 187Re: 187Re187Os cosmochronometry. Phys. Rev. Lett., 77, 5190(1996).

    [37] F. Bosch, Yu. A. Litvinov. Beta decay of highly charged ions. Rep. Prog. Phys., 74, 016301(2011).

    [38] S. Goriely et al. New fission fragment distributions and r-process origin of the rare-earth elements. Phys. Rev. Lett., 111, 242502(2013).

    [39] M. N. H. Comsan.

    [40] B. A. Remington et al. Modeling astrophysical phenomena in the laboratory with intense lasers. Science, 284, 1488(1999).

    [41] B. Albertazzi et al. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science, 346, 325(2014).

    [42] G. Revet et al. Laboratory unraveling of matter accretion in young stars. Sci. Adv., 3, e1700982(2017).

    [43] G. Gregori et al. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. Nature, 481, 480-483(2012).

    [44] C. Danson et al. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, e3(2015).

    [45] C. Guerrero et al. Prospects for direct neutron capture measurements on s-process branching point isotopes. Eur. Phys. J. A, 53, 87(2017).

    [46] M. Roth et al. Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett., 110, 044802(2013).

    [47] I. Pomerantz et al. Ultrashort pulsed neutron source. Phys. Rev. Lett., 113, 184801(2014).

    [48] Y. Arikawa et al. High-intensity neutron generation via laser-driven photonuclear reaction. Plasma Fusion Res., 10, 2404003(2015).

    [49] D. P. Higginson et al. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers. Phys. Rev. Lett., 115, 054802(2015).

    [50] S. Mirfayzi et al. Experimental demonstration of a compact epithermal neutron source based on a high power laser. Appl. Phys. Lett., 111, 044101(2017).

    [51] A. Macchi et al. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751(2013).

    [52] E. Gaul et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. Appl. Opt., 49, 1676-1681(2010).

    [53] Z. Gan et al. 200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse. Opt. Express, 25, 5169(2017).

    [54] J. H. Sung et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett., 42, 2058(2017).

    [55] J. P. Zou et al. Design and current progress of the Apollon 10 PW project. High Power Laser Sci. Eng., 3, e2(2015).

    [56] B. Rus et al. ELI-beamlines: Development of next generation short-pulse laser systems. Proc. SPIE, 9515, 95150F(2015).

    [57] R. Dabu. High power femtosecond lasers at ELI-NP. AIP Conf. Proc., 1645, 219(2015).

    [58] E. Cartlidge. The light fantastic. Science, 359, 382-385(2018).

    [59] J. Galin, F. Goldenbaum, D. Hilscher, U. Jahnke, B. Lott, L. Pienkowski. Neutron production by hadron-induced spallation reactions in thin and thick Pb and U targets from 1 to 5 GeV. Nucl. Instrum. Methods Phys. Res., Sect. A, 414, 100-116(1998).

    [60] F. Wagner et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002(2016).

    [61] I. J. Kim et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses. Phys. Plasmas, 23, 070701(2016).

    [62] A. Higginson. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun., 9, 724(2018).

    [63] D. P. Higginson et al. Characterization of a laser-generated neutron source.

    [64] M. Nakatsutsumi et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314-2316(2010).

    [65] M. Nakatsutsumi et al. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. Nat. Commun., 9, 280(2018).

    [66] F. Fiuza et al. Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett., 109, 215001(2012).

    [67] S. N. Chen et al. Collimated protons accelerated from an overdense gas jet irradiated by a 1 µm wavelength high-intensity short-pulse laser. Sci. Rep., 7, 13505(2017).

    [68] C. M. Brenner et al. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets. Appl. Phys. Lett., 104, 081123(2014).

    [69] A. A. Sahai et al. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient. Phys. Rev. E, 88, 043105(2013).

    [70] H. Y. Wang et al. High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse. Phys. Rev. Spec. Top. - Accel. Beams, 18, 021302(2015).

    [71] A. V. Brantov et al. Synchronized ion acceleration by ultraintense slow light. Phys. Rev. Lett., 116, 085004(2016).

    [72] M. L. Zhou et al. Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime. Phys. Plasmas, 23, 043112(2016).

    [73] A. V. Brantov et al. Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets. Phys. Rev. Spec. Top. - Accel. Beams, 18, 021301(2015).

    [74] C. Ellison, J. Fuchs. Optimizing laser-accelerated ion beams for a collimated neutron source. Phys. Plasmas, 17, 113105(2010).

    [75] S. Busold et al. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV. Phys. Rev. Spec. Top. - Accel. Beams, 17, 031302(2014).

    [76] M. Borghesi, J. Fuchs, T. Toncian et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science, 312, 410(2006).

    [77] E. d’Humières, J. Fuchs et al. Proton acceleration: New developments in energy increase, focusing and energy selection. AIP Conf. Proc., 877, 41(2006).

    [78] T. Baeva, S. Gordienko, A. Pukhov. Focusing of laser-generated ion beams by a plasma cylinder: Similarity theory and the thick lens formula. Phys. Plasmas, 13, 063103(2006).

    [79] K. van der Meer et al. Spallation yields of neutrons produced in thick lead/bismuth targets by protons at incident energies of 420 and 590 MeV. Nucl. Instrum. Methods Phys. Res., Sect. B, 217, 202-220(2004).

    [80] A. Ferrari et al.

    [81] T. T. Böhlen et al. The FLUKA code: Developments and challenges for high energy and medical applications. Nucl. Data Sheets, 120, 211-214(2014).

    [82] A. Couture, R. Reifarth. Direct measurements of neutron capture on radioactive isotopes. At. Data Nucl. Data Tables, 93, 807(2007).

    [83] S. Mirfayzi et al. Calibration of time of flight detectors using laser-driven neutron source. Rev. Sci. Instrum., 86, 073308(2015).

    [84] A. Alejo et al. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets. Plasma Phys. Controlled Fusion, 59, 064004(2017).

    [85] P. A. Norreys et al. Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W cm−2. Plasma Phys. Controlled Fusion, 40, 175(1998).

    [86] R. K. Fisher et al. High-resolution neutron imaging of laser fusion targets using bubble detectors. Phys. Plasmas, 9, 2182-2185(2002).

    [87] M. Storm et al. Fast neutron production from lithium converters and laser driven protons. Phys. Plasmas, 20, 053106(2013).

    [88] C. Zulick et al. Energetic neutron beams generated from femtosecond laser plasma interactions. Appl. Phys. Lett., 102, 124101(2013).

    [89] J. M. Gómez-Ros et al. CYSP: A new cylindrical directional neutron spectrometer. Conceptual design. Radiat. Meas., 82, 47-51(2015).

    [90] D. Maire et al. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation. Radiat. Prot. Dosim., 161, 245-248(2014).

    [91] G. Croci, F. Murtas, F. Resnati. Prospects in MPGDs development for neutron detection.

    [92] W. Greiner, A. V. Karpov, I. N. Mishustin, V. I. Zagrebaev. Production of heavy and superheavy neutron-rich nuclei in neutron capture processes. Phys. Rev. C, 84, 044617(2011).

    [93] M. D. Rosen et al. Exploding-foil technique for achieving a soft X-ray laser. Phys. Rev. Lett., 54, 106(1985).

    [94] K. H. Guber et al. Neutron cross section measurements at the spallation neutron source. J. Nucl. Sci. Tech., 39, 638-641(2002).

    [95] S. N. Chen et al. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam. Sci. Rep., 6, 21495(2016).

    [96] S. Gales et al. New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams. Phys. Scr., 91, 093004(2016).

    [97] J. Pereira et al. β-decay half-lives and β-delayed neutron emission probabilities of nuclei in the region A ≲ 100 relevant for the r process. Phys. Rev. C, 79, 035806(2009).

    [98] A. Paulsen. Utility and Use of Neutron Capture Cross Section Standards and the Status of the Au(n,γ) Standard, 165(1977).

    [99] J. Escher et al. Compound-nuclear reaction cross sections from surrogate measurements. Rev. Mod. Phys., 84, 353-397(2012).

    [100] S. N. Liddick et al. Experimental neutron capture rate constraint far from stability. Phys. Rev. Lett., 116, 242502(2016).

    [101] R. Hamm. Review of industrial accelerators and their applications. IAEA Proceedings Series(2010).

    [102] V. Dangendorf et al. Detectors for energy-resolved fast-neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A, 535, 93(2004).

    [103] D. C. Swift et al. Explanation of anomalous shock temperatures in shock-loaded Mo samples measured using neutron resonance spectroscopy. Phys. Rev. B, 77, 092102(2008).

    [104] N. Guler et al. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility. J. Appl. Phys., 120, 154901(2016).

    [105] L. J. Perkins et al. The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence. Nucl. Fusion, 40, 1(2000).

    [106] J. D. Sethian et al. An overview of the development of the first wall and other principal components of a laser fusion power plant. J. Nucl. Mater., 347, 161(2005).

    [107] U. Fischer et al. Evaluation and validation of d–Li cross section data for the IFMIF neutron source term simulation. J. Nucl. Mater., 367-370, 1531(2007).

    S. N. Chen, F. Negoita, K. Spohr, E. d’Humières, I. Pomerantz, J. Fuchs. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory[J]. Matter and Radiation at Extremes, 2019, 4(5): 054402
    Download Citation