• Opto-Electronic Advances
  • Vol. 7, Issue 7, 240035 (2024)
Yuran Huang1,†, Zhimin Zhang1,2,†, Wenli Tao1,†, Yunfei Wei3..., Liang Xu1, Wenwen Gong1, Jiaqiang Zhou4, Liangcai Cao5, Yong Liu6, Yubing Han1,3,*, Cuifang Kuang1,2,7,** and Xu Liu1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, China
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
  • 5Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • 6College of electronics and information engineering, Shanghai University of Electrical Power, Shanghai 200090, China
  • 7ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
  • show less
    DOI: 10.29026/oea.2024.240035 Cite this Article
    Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu. Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome[J]. Opto-Electronic Advances, 2024, 7(7): 240035 Copy Citation Text show less
    References

    [1] DS Dong, XS Huang, LJ Li et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci Appl, 9, 11(2020).

    [2] AM Valm, S Cohen, WR Legant et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature, 546, 162-167(2017).

    [3] E Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv Mikrosk Anatom, 9, 413-468(1873).

    [4] SW Hell, J Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19, 780-782(1994).

    [5] MGL Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc, 198, 82-87(2000).

    [6] TA Klar, S Jakobs, M Dyba et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA, 97, 8206-8210(2000).

    [7] E Betzig, GH Patterson, R Sougrat et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [8] MJ Rust, M Bates, XW Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3, 793-796(2006).

    [9] B Huang, WQ Wang, M Bates et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [10] H Shroff, CG Galbraith, JA Galbraith et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods, 5, 417-423(2008).

    [11] CB Müller, J Enderlein. Image scanning microscopy. Phys Rev Lett, 104, 198101(2010).

    [12] CK Li, V Le, XN Wang et al. Resolution enhancement and background suppression in optical super-resolution imaging for biological applications. Laser Photon Rev, 15, 1900084(2021).

    [13] TJ Gould, LK Schroeder, PA Pellett et al. STED microscopy. In Kubitscheck U.. Fluorescence Microscopy(2017).

    [14] T Müller, C Schumann, A Kraegeloh. STED microscopy and its applications: new insights into cellular processes on the nanoscale. ChemPhysChem, 13, 1986-2000(2012).

    [15] G Vicidomini, P Bianchini, A Diaspro. STED super-resolved microscopy. Nat Methods, 15, 173-182(2018).

    [16] E Hebisch, E Wagner, V Westphal et al. A protocol for registration and correction of multicolour STED superresolution images. J Microsc, 267, 160-175(2017).

    [17] M Mehedi, M Smelkinson, J Kabat et al. Multicolor stimulated emission depletion (STED) microscopy to generate high-resolution images of respiratory syncytial virus particles and infected cells. Bio-Protocol, 7, e2543(2017).

    [18] FR Winter, M Loidolt, V Westphal et al. Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection. Sci Rep, 7, 46492(2017).

    [19] PA Pellett, XL Sun, TJ Gould et al. Two-color STED microscopy in living cells. Biomed Opt Express, 2, 2364-2371(2011).

    [20] F Bottanelli, EB Kromann, ES Allgeyer et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun, 7, 10778(2016).

    [21] SC Sidenstein, E D’Este, MJ Böhm et al. Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci Rep, 6, 26725(2016).

    [22] J Tonnesen, F Nadrigny, KI Willig et al. Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J, 101, 2545-2552(2011).

    [23] C Spahn, JB Grimm, LD Lavis et al. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett, 19, 500-505(2019).

    [24] KI Willig, W Wegner, A Müller et al. Multi-label in vivo STED microscopy by parallelized switching of reversibly switchable fluorescent proteins. Cell Rep, 35, 109192(2021).

    [25] CW Chang, D Sud, MA Mycek. Fluorescence lifetime imaging microscopy. Methods Cell Biol, 81, 495-524(2007).

    [26] ZY Liu, D Pouli, CA Alonzo et al. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv, 4, eaap9302(2018).

    [27] R Datta, A Gillette, M Stefely et al. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. J Biomed Opt, 26, 070603(2021).

    [28] J Bückers, D Wildanger, G Vicidomini et al. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express, 19, 3130-3143(2011).

    [29] T Niehörster, A Löschberger, I Gregor et al. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods, 13, 257-262(2016).

    [30] S Ranjit, L Malacrida, DM Jameson et al. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat Protoc, 13, 1979-2004(2018).

    [31] MA Digman, VR Caiolfa, M Zamai et al. The phasor approach to fluorescence lifetime imaging analysis. Biophys J, 94, L14-L16(2008).

    [32] B Torrado, L Malacrida, S Ranjit. Linear combination properties of the phasor space in fluorescence imaging. Sensors, 22, 999(2022).

    [33] W Shi, DES Koo, M Kitano et al. Pre-processing visualization of hyperspectral fluorescent data with spectrally encoded enhanced representations. Nat Commun, 11, 726(2020).

    [34] L Scipioni, A Rossetta, G Tedeschi et al. Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat Methods, 18, 542-550(2021).

    [35] MS Frei, B Koch, J Hiblot et al. Live-cell fluorescence lifetime multiplexing using synthetic fluorescent probes. ACS Chem Biol, 17, 1321-1327(2022).

    [36] MS Frei, M Tarnawski, MJ Roberti et al. Engineered HaloTag variants for fluorescence lifetime multiplexing. Nat Methods, 19, 65-70(2022).

    [37] Pisfil M Gonzalez, I Nadelson et al. Stimulated emission depletion microscopy with a single depletion laser using five fluorochromes and fluorescence lifetime phasor separation. Sci Rep, 12, 14027(2022).

    [38] A Battisti, MA Digman, E Gratton et al. Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging. Chem Commun, 48, 5127-5129(2012).

    [39] SH Shim, CL Xia, GS Zhong et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA, 109, 13978-13983(2012).

    [40] RJ Vasquez, B Howell, AM Yvon et al. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell, 8, 973-985(1997).

    [41] YD Zhang, LK Schroeder, MD Lessard et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat Methods, 17, 225-231(2020).

    Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu. Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome[J]. Opto-Electronic Advances, 2024, 7(7): 240035
    Download Citation