• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0314001 (2025)
Liang He1,2, Zhenlin Hu1,2, Tianze Wang1,2, Nan Lin1,2,*, and Yuxin Leng1,2
Author Affiliations
  • 1Key Laboratory of Ultra-Intense Laser Science and Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Department of Precision Optics Engineering, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/LOP242211 Cite this Article Set citation alerts
    Liang He, Zhenlin Hu, Tianze Wang, Nan Lin, Yuxin Leng. Experimental Study on Highly Effective Broadband Extreme Ultraviolet Light Source by Spatially Confined Plasma[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314001 Copy Citation Text show less
    References

    [1] Torretti F, Sheil J, Schupp R et al. Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography[J]. Nature Communications, 11, 2334(2020).

    [2] Lin N, Yang W H, Chen Y Y et al. Research progress and development trend of extreme ultraviolet lithography source[J]. Laser & Optoelectronics Progress, 59, 0922002(2022).

    [3] Lin N, Chen Y Y, Wei X et al. Spectral purity systems applied for laser-produced plasma extreme ultraviolet lithography sources: a review[J]. High Power Laser Science and Engineering, 11, e64(2023).

    [4] Wu B Q, Kumar A. Extreme ultraviolet lithography and three dimensional integrated circuit: a review[J]. Applied Physics Reviews, 1, 011104(2014).

    [5] Tobin I, Juschkin L, Sidelnikov Y et al. Laser triggered Z-pinch broadband extreme ultraviolet source for metrology[J]. Applied Physics Letters, 102, 203504(2013).

    [6] Lio A. EUV photoresists: a progress report and future prospects[J]. Synchrotron Radiation News, 32, 9-14(2019).

    [7] Orji N G, Badaroglu M, Barnes B M et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 1, 532-547(2018).

    [8] Root W, Park J, Nam Y et al. Optical diffraction-based methodology to measure on-product EUV exposure focus variations[J]. Proceedings of SPIE, 12955, 129552Q(2024).

    [9] Schmidt D, Cornell R, Kling M E et al. Characterization of EUV image fading induced by overlay corrections using pattern shift response metrology[J]. Proceedings of SPIE, 11147, 1114713(2019).

    [10] Yang W H, Yao S X, Cao J et al. Mitigating the impact of asymmetric deformation on advanced metrology for photolithography[J]. Applied Sciences, 14, 4440(2024).

    [11] Yang W H, Lin N, Wei X et al. Improving accuracy and sensitivity of diffraction-based overlay metrology[J]. Chinese Optics Letters, 21, 071204(2023).

    [12] van Setten E, Bottiglieri G, de Winter L et al. Edge placement error control and Mask3D effects in High-NA anamorphic EUV lithography[J]. Proceedings of SPIE, 10450, 104500W(2017).

    [13] Cao J, Yang W H, Liu Z X et al. Controlling edge placement error in extreme ultraviolet lithography[J]. Chinese Journal of Lasers, 51, 0701005(2024).

    [14] Porter C, Coenen T, Geypen N et al. Soft x-ray: novel metrology for 3D profilometry and device pitch overlay[J]. Proceedings of SPIE, 12496, 124961I(2023).

    [15] Schriever G, Stamm U, Gäbel K et al. High power EUV sources based on gas discharge plasmas and laser produced plasmas[J]. Microelectronic Engineering, 61, 83-88(2002).

    [16] Wachulak P W, Bartnik A, Fiedorowicz H. Sub-70 nm resolution tabletop microscopy at 13.8 nm using a compact laser-plasma EUV source[J]. Optics Letters, 35, 2337-2339(2010).

    [17] Fujino T, Tanaka Y, Harada T et al. Extreme ultraviolet mask observations using a coherent extreme ultraviolet scatterometry microscope with a high-harmonic-generation source[J]. Japanese Journal of Applied Physics, 54, 06(2015).

    [18] Li Y Y, Lee Y W, Ho T S et al. Spectroscopic characterization of Si/Mo thin-film stack at extreme ultraviolet range[J]. Optics Letters, 43, 4029-4032(2018).

    [19] Kim I J, Kim C M, Kim H T et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field[J]. Physical Review Letters, 94, 243901(2005).

    [20] Camper A, Ferré A, Blanchet V et al. Quantum-path-resolved attosecond high-harmonic spectroscopy[J]. Physical Review Letters, 130, 083201(2023).

    [21] Camper A, Skantzakis E, Géneaux R et al. Two-dimensional phase cartography for high-harmonic spectroscopy[J]. Optica, 8, 308-315(2021).

    [22] Behnke L, Schupp R, Bouza Z et al. Extreme ultraviolet light from a tin plasma driven by a 2-µm-wavelength laser[J]. Optics Express, 29, 4475-4487(2021).

    [23] Schupp R, Torretti F, Meijer R A et al. Efficient generation of extreme ultraviolet light from Nd∶YAG-driven microdroplet-tin plasma[J]. Physical Review Applied, 12, 014010(2019).

    [24] Mostafa Y, Behnke L, Engels D J et al. Production of 13.5 nm light with 5% conversion efficiency from 2 μm laser-driven tin microdroplet plasma[J]. Applied Physics Letters, 123, 234101(2023).

    [25] Liu W J, Ice G E, Tischler J Z et al. Short focal length Kirkpatrick-Baez mirrors for a hard X-ray nanoprobe[J]. Review of Scientific Instruments, 76, 113701(2005).

    [26] Xu Z, Zhang L, Cheng Y X et al. An extreme ultraviolet spectrometer working at 10‒130 Å for tungsten spectra observation with high spectral resolution and fast-time response in Experimental Advanced Superconducting Tokamak[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1010, 165545(2021).

    [27] Scheers J. Charge-state-resolved spectroscopy of multiply-charged tin ions[D], 34-48(2020).

    [28] Henke B L, Gullikson E M, Davis J C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50‒30, 000 eV, Z = 1‒92[J]. Atomic Data and Nuclear Data Tables, 54, 181-342(1993).

    [29] Tomita K, Sato Y, Tsukiyama S et al. Time-resolved two-dimensional profiles of electron density and temperature of laser-produced tin plasmas for extreme-ultraviolet lithography light sources[J]. Scientific Reports, 7, 12328(2017).

    [30] O’Sullivan G, Li B W, D’Arcy R et al. Spectroscopy of highly charged ions and its relevance to EUV and soft X-ray source development[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 144025(2015).

    [31] Versolato O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science Technology, 28, 083001(2019).

    [32] Pan Y, Tomita K, Sunahara A et al. Joint measurement of electron density, temperature, and emission spectrum of Nd∶YAG laser-produced tin plasma[J]. Applied Physics Letters, 123, 204103(2023).

    [33] Su M G, Min Q, Cao S Q et al. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model[J]. Scientific Reports, 7, 45212(2017).

    [34] Wang T Z, Hu Z L, He L et al. Characterization of optical depth for laser produced plasma extreme ultraviolet source[J]. Vacuum, 231, 113805(2025).

    [35] Harilal S S, Sizyuk T, Sizyuk V et al. Efficient laser-produced plasma extreme ultraviolet sources using grooved Sn targets[J]. Applied Physics Letters, 96, 111503(2010).

    Liang He, Zhenlin Hu, Tianze Wang, Nan Lin, Yuxin Leng. Experimental Study on Highly Effective Broadband Extreme Ultraviolet Light Source by Spatially Confined Plasma[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314001
    Download Citation