[1] Maheepala M, Kouzani A Z, Joordens M A. Light-based indoor positioning systems: a review[J]. IEEE Sensors Journal, 20, 3971-3995(2020).
[2] Cao Y, Dang Y C, Peng X F et al. Indoor visible light localization method using TOA/RSS hybrid information[J]. Chinese Journal of Lasers, 48, 0106005(2021).
[3] Qin L, Zhang C T, Guo Y et al. Research on visible light indoor localization algorithm based on Elman neural network[J]. Acta Optica Sinica, 42, 0506002(2022).
[4] Zhao L, Han Z D, Zhang F. Research on stereo location in visible light room based on neural network[J]. Chinese Journal of Lasers, 48, 0706004(2021).
[5] Xu S W, Wu Y, Wang X F. Visible light positioning algorithm based on particle swarm optimization compressed sensing[J]. Chinese Journal of Lasers, 48, 0306004(2021).
[6] Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 50, 100-107(2004).
[7] Zhuang Y, Hua L C, Wang Q et al. Visible light positioning and navigation using noise measurement and mitigation[J]. IEEE Transactions on Vehicular Technology, 68, 11094-11106.3D(2019).
[8] Şahin A, Eroğlu Y S, Güvenç İ et al. Hybrid 3D localization for visible light communication systems[J]. Journal of Lightwave Technology, 33, 4589-4599(2015).
[9] Zhou B P, Liu A, Lau V et al. Performance limits of visible light-based positioning for Internet-of-vehicles: time-domain localization cooperation gain[J]. IEEE Transactions on Intelligent Transportation Systems, 22, 5374-5388(2021).
[10] Gu W J, Aminikashani M, Deng P et al. Impact of multipath reflections on the performance of indoor visible light positioning systems[J]. Journal of Lightwave Technology, 34, 2578-2587(2016).
[11] Zhou B P, Lau V, Chen Q C et al. Simultaneous positioning and orientating for visible light communications: algorithm design and performance analysis[J]. IEEE Transactions on Vehicular Technology, 67, 11790-11804(2018).
[12] Cai Y, Guan W P, Wu Y X et al. Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization[J]. IEEE Photonics Journal, 9, 7908120(2017).
[13] Chen H, Guan W P, Li S M et al. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm[J]. Optics Communications, 413, 103-120(2018).
[14] Wu Y X, Liu X W, Guan W P et al. High-speed 3D indoor localization system based on visible light communication using differential evolution algorithm[J]. Optics Communications, 424, 177-189(2018).
[15] Huang L, Wang P, Liu Z Y et al. Indoor three-dimensional high-precision positioning system with bat algorithm based on visible light communication[J]. Applied Optics, 58, 2226-2234(2019).
[16] Zhang H Y, Yu H Y, Chen L L. Indoor visible light location using adaptive pollination receiving signal strength indication based on reverse learning strategy[J]. Chinese Journal of Lasers, 48, 0106001(2021).
[17] Li Z P, Qiu G D, Zhao L et al. Dual-mode LED aided visible light positioning system under multi-path propagation: design and demonstration[J]. IEEE Transactions on Wireless Communications, 20, 5986-6003(2021).
[18] Majeed K, Hranilovic S. Performance bounds on passive indoor positioning using visible light[J]. Journal of Lightwave Technology, 38, 2190-2200(2020).
[19] Heidi S, Qian W T, Jean A. Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver[J]. Journal of Lightwave Technology, 35, 309-319(2017).
[20] Shen S Q, Li S Y, Steendam H. Simultaneous position and orientation estimation for visible light systems with multiple LEDs and multiple PDs[J]. IEEE Journal on Selected Areas in Communications, 38, 1866-1879.3D(2020).
[21] Xu S W, Wu Y, Wang X F et al. Indoor 3D visible light positioning system based on adaptive parameter particle swarm optimisation[J]. IET Communications, 14, 3707-3714(2020).
[22] Han H G, Lu W, Zhang L et al. Adaptive gradient multiobjective particle swarm optimization[J]. IEEE Transactions on Cybernetics, 48, 3067-3079(2018).