[1] Shealy D L. Historical perspective of laser beam shaping[J]. Proceedings of SPIE, 4770, 28-47(2002).
[2] Du S J, Lu Q S, Shu B H. Preliminary study on high power laser window designed with binary optics[J]. Optical Technique, 33, 227-228, 231(2007).
[3] Dunsky C. High-speed microvia formation with UV solid-state lasers[J]. Proceedings of the IEEE, 90, 1670-1680(2002).
[4] Partlo W N, Tompkins P J, Dewa P G et al. Depth of focus and resolution enhancement of i-line and deep-UV lithography using annular illumination[J]. Proceedings of SPIE, 1927, 137-157(1993).
[5] Chichkov B. Laser printing: trends and perspectives[J]. Applied Physics A, 128, 1015(2022).
[6] Wei X, Zhao W W, Zheng T et al. Laser-modified luminescence for optical data storage[J]. Chinese Physics B, 31, 117901(2022).
[7] Burns H S, Biegalski S R. Forensic signatures from laser isotope separation[J]. Journal of Radioanalytical and Nuclear Chemistry, 331, 4947-4952(2022).
[8] Gao B K, Rong Y F, Chen P et al. An optical fiber probe based on multi-optical well particle capture[J]. Optoelectronics Letters, 18, 641-646(2022).
[9] Li R F, Hu Z J, Li H T et al. All-fiber laser-self-mixing interferometer with adjustable injection intensity for remote sensing of 40 km[J]. Journal of Lightwave Technology, 40, 4863-4870(2022).
[10] Teymour S, Kania B, Lal K et al. Energy-based devices in the treatment of acne scars in skin of color[J]. Journal of Cosmetic Dermatology, 22, 1177-1184(2023).
[11] Tazes I, Passalidis S, Kaselouris E et al. A computational study on the optical shaping of gas targets via blast wave collisions for magnetic vortex acceleration[J]. High Power Laser Science and Engineering, 10, e31(2022).
[12] Dickey F M. Laser beam shaping[J]. Optics and Photonics News, 14, 30-35(2003).
[13] Dickey F M, Lizotte T E[M]. Laser beam shaping applications(2017).
[14] Ge W G, Liu Y X, Ma S J et al. A comparison of hard-edged, super-Gaussian and serrated apertures[J]. Laser Journal, 26, 48-49(2005).
[15] Bel’kov S A, Voronich I N, Garanin S G et al. Study of the apodization of a laser beam by serrated aperture stops for high-power installations of laser thermonuclear synthesis[J]. Journal of Optical Technology, 82, 330-338(2015).
[16] Wang J G, Zhu Z D, Sun Z et al. Diffraction characteristics of serrated circular aperture with random radius[J]. High Power Laser and Particle Beams, 24, 1801-1805(2012).
[17] Sizova I, Moskalev T, Mikheev L. Laser beam shaping with circular serrated apertures. I. Spatial filtering[J]. Applied Optics, 58, 4905-4909(2019).
[18] Sizova I, Moskalev T, Stavrovskii D. Correction of shape distortions in laser beams apodized with circular serrated apertures[J]. Applied Optics, 60, 4861-4870(2021).
[19] Guo H, Yan J F, Li X et al. Patterned graphene oxide by spatially-shaped femtosecond laser[J]. Chinese Journal of Lasers, 48, 0202018(2021).
[20] An G, Yan J J, Liu Y. Calibration and application of optical pulse shaping system based on liquid crystal spatial light modulator[J]. Acta Photonica Sinica, 43, 0706012(2014).
[21] Wang S Y, Liu Z, Lin P et al. Laser beam divergence control technology based on liquid crystal spatial light modulator[J]. Chinese Journal of Liquid Crystals and Displays, 37, 1430-1438(2022).
[22] Li Y, Li Z R, Liu S X. 4f pulse-shaping system influenced by liquid crystal spatial light modulator pixel structure[J]. High Power Laser and Particle Beams, 28, 30-35(2016).
[23] Prawiharjo J, Daga N K, Geng R et al. High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping[J]. Optics Express, 16, 15074-15089(2008).
[24] Wittenbecher L, Zigmantas D. Correction of Fabry-Pérot interference effects in phase and amplitude pulse shapers based on liquid crystal spatial light modulators[J]. Optics Express, 27, 22970-22982(2019).
[25] Zhai Z S, Zhang Y, Lü Q H et al. Research on beam shaping method based on combined grating[J]. Chinese Journal of Lasers, 49, 1305001(2022).
[26] Chen J, Huang Z X, Kuang D F. Optical manipulation of micro-particles with multi-axis asymmetric structured beam[J]. Chinese Journal of Lasers, 48, 2413001(2021).
[27] Li X Y, Qian X F, Meng N N. Optimization algorithm of diffractive optical elements for beam shaping[J]. Acta Optica Sinica, 39, 1105003(2019).
[28] Huo J Q, Hu Y, Cheng B P. History and application of diffractive optics technology[J]. Laser & Optoelectronics Progress, 60, 0700002(2023).
[29] Gong H P, Lü Z W, Lin D Y. Present status of laser beam spatial shaping[J]. Laser & Optronics Progress, 42, 2-5(2005).
[30] Xiu L W, Li W Q, Yang P et al. Improved GS algorithm based on hyperbolic initial phase[J]. Acta Photonica Sinica, 51, 0405001(2022).
[31] Yang G, Wang L, Dong B et al. On the amplitude-phase retrieval problem in an optical-system involved nonunitary transformation[J]. Optik, 75, 68-74(1987).
[32] Wang H, Hu T, Wang Z et al. Reconstruction of power pylons from LiDAR point clouds based on structural segmentation and parameter estimation[J]. IEEE Geoscience and Remote Sensing Letters, 19, 6500205(2022).
[33] Liu Y, Huang J H, Zhao C J et al. Experimental study on background noise suppression when focusing through scattering medium[J]. Acta Photonica Sinica, 52, 0129001(2023).
[34] Liu W J, Pang H, Cao A X et al. Design and experiments of annular beam shaping device with low speckle noise[J]. Acta Photonica Sinica, 49, 0222001(2020).
[35] Zhang F, Li B X, Tian L et al. Optimization of underwater optical transmission based on hadamard coding algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 37, 1453-1458(2022).
[36] Lu Y, Jiang Z F, Liu W G et al. Laser mode control in fiber with core diameter of 30 μm based on 3 × 1 photonic lantern[J]. Acta Optica Sinica, 41, 1736001(2021).
[37] Buske P, Völl A, Eisebitt M et al. Advanced beam shaping for laser materials processing based on diffractive neural networks[J]. Optics Express, 30, 22798-22816(2022).
[38] He Z W, Zhuang Q S, Cao H N et al. Focusing through scattering medium based on memetic algorithm[J]. Laser & Optoelectronics Progress, 58, 2429001(2021).
[39] Hsu K H, Lin H Y. Trade-off between diffraction efficiency and uniformity for design of binary diffractive laser beam shaper[J]. Optical Review, 20, 296-302(2013).
[40] Shao J Q, Su Z P. Design of diffractive optical elements with continuous phase distribution based on machine learning[J]. Acta Optica Sinica, 43, 0323001(2023).
[41] Lalithambigai K, Anbarasan P M, Rajesh K B. Formation of optical needle by high NA lens axicon with dedicated complex spiral phase mask[J]. Optical and Quantum Electronics, 47, 2017-2025(2015).
[42] Umamageswari N, Rajesh K B, Udhayakumar M et al. Tight focusing properties of spirally polarized LG (1, 1)* beam with high NA parabolic mirror[J]. Optical and Quantum Electronics, 50, 77(2018).
[43] Zhang Y, Yang K T, Yang C C. Fabrication technology and development of binary optical elements[J]. Optical Instruments, 27, 80-85(2005).
[44] Wang L K, Zhao Y, Yang Y et al. Two-step femtosecond laser etching for bulk micromachining of 4H-SiC membrane applied in pressure sensing[J]. Ceramics International, 48, 12359-12367(2022).
[45] Hosseingholilou S, Dorranian D. Electrophoretic deposited gold nanoparticle thin film on silver substrate[J]. IET Optoelectronics, 17, 51-60(2023).
[46] Häcker A V, Mohr-Weidenfeller L, Stolzenberg C F L et al. Modifications to a high-precision direct laser writing setup to improve its laser microfabrication[J]. Proceedings of SPIE, 11989, 119890U(2022).
[47] You K Y, Fang F Z. High effective laser assisted diamond turning of binderless tungsten carbide[J]. Journal of Materials Processing Technology, 302, 117505(2022).
[48] Sohrabi S, Pazokian H, Ghafary B et al. Superhydrophobic-antibacterial polycarbonate fabrication using excimer laser treatment[J]. Optik, 262, 169377(2022).
[49] Wang M, Wang X F, Zhou Z C et al. High-spatial-resolution composition analysis of micro/nano-structures with a nanoscale compositional variation[J]. Nano Research, 16, 1090-1095(2023).
[50] Ekimenkova A S, Orekhova M K, Voznesenskaya A O et al. Design of an optical system for a laser beam shaping system based on aspheric polymer lenses[J]. Journal of Optical Technology, 87, 698-702(2020).
[51] Zhao Y, Xiang Y, Li T T. Optical design of deep ultraviolet laser irradiation system for accelerating material aging[J]. Acta Optica Sinica, 41, 0522001(2021).
[52] Chen K. Research and design of Gaussian beam shaping system for flat-topped beam[D](2011).
[53] Zhong X S, Tang X J, Wang G. Study on aspheric lens group in laser beam shaping system[J]. Laser & Infrared, 48, 515-518(2018).
[54] Feng K, Li J S. Design of aspherics lenses shaping system on Gaussian beam[J]. Opto-Electronic Engineering, 40, 127-132(2013).
[55] Chen K, Chen M, Li G et al. Numerical simulation and analysis of convex two-aspheric-mirror system that converts a Gaussian to a flattop beam[J]. Laser & Infrared, 40, 1043-1047(2010).
[56] Li D J, Wang J C, Chen Y et al. Design of high power long-coke deep-Gaussian beam shaping system[J]. Optics and Precision Engineering, 28, 2129-2137(2020).
[57] van Wonterghem B M, Salmon J T, Wilcox R W. Beamletpulse-generation and wavefront-control system[P].
[58] Li C, Wang W X, Li W W et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 33, 094002(2021).
[59] Will I. Generation of flat-top picosecond pulses by means of a two-stage birefringent filter[J]. Nuclear Instruments and Methods in Physics Research Section A, 594, 119-125(2008).
[60] Yang H L, Meng J Q, Chen W B. High efficiency and high-energy intra-cavity beam shaping laser[J]. Laser Physics, 25, 095005(2015).
[61] Halassi A, Driouche Y, Hamdi R et al. Generalized temporal synthesis method for a birefringent laser pulse shaper[J]. Journal of the Optical Society of America A, 37, C15-C19(2020).
[62] Huang W H, Liu T G, Wang Z et al. Flexible refractive and diffractive micro-optical films shaped by fitting aspherical microprofiles with featured aperture and depth and their spatial arrangement for imaging applications[J]. Journal of Vacuum Science & Technology B, 40, 022804(2022).
[63] Luo Z, Duan J A, Guo C L. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica[J]. Optics Letters, 42, 2358-2361(2017).
[64] Bian J, Chen F R, Ling H et al. Experimental and modeling study of controllable laser lift-off via low-fluence multiscanning of polyimide-substrate interface[J]. International Journal of Heat and Mass Transfer, 188, 122609(2022).
[65] Lü B D, Cai B W, Zhang B. Spatial shaping and uniform irradiation on the target of high power lasers[J]. Infrared and Laser Engineering, 28, 25-28(1999).
[66] Tai Y H, Miyamoto T. Experimental characterization of high tolerance to beam irradiation conditions of light beam power receiving module for optical wireless power transmission equipped with a fly-eye lens system[J]. Energies, 15, 7388(2022).
[67] Zhao Y, Ding Y C. Multi-point controllable wavefront shaping based on superpixel method[J]. Acta Photonica Sinica, 50, 0929002(2021).
[68] Guo K, Peng K, Wang W F et al. Optical film liquid variable focus microlens array[J]. Infrared and Laser Engineering, 51, 20210958(2022).
[69] Jin Y H, Zhao Y, Jiang Y J. Microlens beam shaping and homogenizing optical system for excimer laser[J]. Chinese Journal of Lasers, 42, 0602003(2015).
[70] Yin Z Y, Wang Y F, Jia W W et al. Performance analysis of beam integrator system based on microlens array[J]. Chinese Journal of Lasers, 39, 0702007(2012).
[71] Zheng J Z, Yu Q X, Guan S H. Small-scale non-uniformity of cross segmented wedge array focus system[J]. Optics and Precision Engineering, 17, 38-44(2009).
[72] Zhou Y, Zhu Q X, Huang Z Y et al. Design and experimental investigations of laser homogenization system based on cylindrical microlens array[J]. Laser & Infrared, 50, 486-492(2020).
[73] Sanjeev A, Kapellner Y, Shbero N et al. Non-contact optical wavefront shaping for focusing light and high-resolution imaging inside and behind biological scattering medium[J]. Proceedings of SPIE, 10932, 1093204(2019).
[74] Huang D J, Fan W, Lin Z Q. Spatial laser beam shaping using digital micromirror device[J]. Chinese Journal of Lasers, 38, 0502008(2011).
[75] Qiu J S, Fan Z W, Tang X X. Research on spatial shaping technology of super-Gaussian flattopped distributed beam[J]. Journal of Optoelectronics·Laser, 25, 233-238(2014).
[76] Lou Y Y, Zheng X L, Zhang S C et al. Flat-top beams spatial shaping with digital micromirror device[J]. Laser Technology, 40, 916-920(2016).
[77] Ruyer C, Fusaro A, Debayle A et al. Influence of a random phase plate on the growth of the backward stimulated Brillouin scatter[J]. Physical Review E, 107, 035208(2023).
[78] Li P, Ma C, Su J Q et al. Analysis of laser optimized spectrum for smoothing the focused spot by temporal and special method[J]. Chinese Journal of Lasers, 35, 534-538(2008).
[79] Bagnoud V, Hornung J, Afshari M et al. Implementation of a phase plate for the generation of homogeneous focal-spot intensity distributions at the high-energy short-pulse laser facility PHELIX[J]. High Power Laser Science and Engineering, 7, e62(2019).