[1] W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).
[2] D. Kuzum, S. Yu, H.-S. Philip Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).
[3] D. Li, X. Liang, Neurons mimicked by electronics. Nature 554, 472–473 (2018).
[4] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24, 384010 (2013).
[5] V.K. Sangwan, M.C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).
[6] Y.-C. Chen, C.-Y. Lin, H. Cho, S. Kim, B. Fowler et al., Current-sweep operation on nonlinear selectorless RRAM for multilevel cell applications. J. Electron. Mater. 49, 3499–3503 (2020).
[7] Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
[8] S. Yu, Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260 (2018).
[9] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
[10] E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).
[11] J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).
[12] M. Prezioso, M.R. Mahmoodi, F.M. Bayat, H. Nili, H. Kim et al., Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat. Commun. 9, 5311 (2018).
[13] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge et al., Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).
[14] M. Hu, C.E. Graves, C. Li, Y. Li, N. Ge et al., Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).
[15] Y. Li, K.-W. Ang, Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst. 3, 2000137 (2021).
[16] M.A. Lastras-Montaño, K.-T. Cheng, Resistive random-access memory based on ratioed memristors. Nat. Electron. 1, 466–472 (2018).
[17] A. Thomas, Memristor-based neural networks. J. Phys D-Appl. Phys. 46, 093001 (2013).
[18] L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).
[19] Y. Xi, B. Gao, J. Tang, A. Chen, M.-F. Chang et al., In-memory learning with analog resistive switching memory: a review and perspective. Proc. IEEE 109, 14–42 (2021).
[20] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008).
[21] L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).
[22] H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu et al., Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).
[23] R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories: nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).
[24] G.W. Burr, R.M. Shelby, S. Sidler, C. di Nolfo, J. Jang et al., Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 3498–3507 (2015).
[25] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S.R. Nandakumar et al., Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 11, 2473 (2020).
[26] S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi et al., SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).
[27] J. Lee, C. Du, K. Sun, E. Kioupakis, W.D. Lu, Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano 10, 3571–3579 (2016).
[28] J.H. Yoon, J.H. Han, J.S. Jung, W. Jeon, G.H. Kim et al., Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots. Adv. Mater. 25, 1987–1992 (2013).
[29] W.-Y. Chang, C.-A. Lin, J.-H. He, T.-B. Wu, Resistive switching behaviors of ZnO nanorod layers. Appl. Phys. Lett. 96, 242109 (2010).
[30] H.-P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg et al., Phase change memory. Proc. IEEE 98, 2201 (2010).
[31] C. Liu, H. Chen, S. Wang, Q. Liu, Y.G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).
[32] F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).
[33] A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).
[34] X. Feng, Y. Li, L. Wang, S. Chen, Z.G. Yu et al., Neuromorphic computing: a fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 5, 1970061 (2019).
[35] P. Cheng, K. Sun, Y.H. Hu, Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016).
[36] W. Huh, S. Jang, J.Y. Lee, D. Lee, D. Lee et al., Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30, e1801447 (2018).
[37] C. Zhang, H. Zhou, S. Chen, G. Zhang, Z.G. Yu et al., Recent progress on 2D materials-based artificial synapses. Crit. Rev. Solid State Mater. Sci. 47, 665–690 (2022).
[38] Y. Li, S. Chen, Z. Yu, S. Li, Y. Xiong et al., In-memory computing using memristor arrays with ultrathin 2D PdSeOx/PdSe2 heterostructure. Adv. Mater. 34, e2201488 (2022).
[39] H. Zhao, Z. Dong, H. Tian, D. DiMarzi, M.-G. Han et al., Atomically thin femtojoule memristive device. Adv. Mater. 29, 1703232 (2017).
[40] R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).
[41] R. Xu, H. Jang, M.-H. Lee, D. Amanov, Y. Cho et al., Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19, 2411–2417 (2019).
[42] X. Wu, R. Ge, P.-A. Chen, H. Chou, Z. Zhang et al., Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31, e1806790 (2019).
[43] S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8, nwaa172 (2020).
[44] V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).
[45] Y.S. Ang, L. Cao, L.K. Ang, Physics of electron emission and injection in two-dimensional materials: theory and simulation. InfoMat 3, 502–535 (2021).
[46] D. Akinwande, C. Huyghebaert, C.H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).
[47] L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019).
[48] M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).
[49] C.-Y. Wang, S.-J. Liang, S. Wang, P. Wang, Z.-A. Li et al., Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).
[50] S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).
[51] K. Zhu, X. Liang, B. Yuan, M.A. Villena, C. Wen et al., Graphene-boron nitride-graphene cross-point memristors with three stable resistive states. ACS Appl. Mater. Interfaces 11, 37999–38005 (2019).
[52] C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).
[53] L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
[54] L. Chen, Z.G. Yu, D. Liang, S. Li, W.C. Tan et al., Ultrasensitive and robust two-dimensional indium selenide flexible electronics and sensors for human motion detection. Nano Energy 76, 105020 (2020).
[55] S. Chen, M.R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan et al., Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).
[56] M. Sivan, Y. Li, H. Veluri, Y. Zhao, B. Tang et al., All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019).
[57] C.-Y. Wang, C. Wang, F. Meng, P. Wang, S. Wang et al., 2D layered materials for memristive and neuromorphic applications. Adv. Electron. Mater. 6, 1901107 (2020).
[58] G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31, 2005443 (2021).
[59] Z. Zhang, D. Yang, H. Li, C. Li, Z. Wang et al., 2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorph. Comput. Eng. 2, 032004 (2022).
[60] G. Lee, J.-H. Baek, F. Ren, S.J. Pearton, G.-H. Lee et al., Artificial neuron and synapse devices based on 2D materials. Small 17, 2100640 (2021).
[61] K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang et al., Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interfaces 13, 32606–32623 (2021).
[62] J. Bian, Z. Cao, P. Zhou, Neuromorphic computing: devices, hardware, and system application facilitated by two-dimensional materials. Appl. Phys. Rev. 8, 041313 (2021).
[63] F. Zhang, C. Li, Z. Li, L. Dong, J. Zhao, Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications. Microsyst. Nanoeng. 9, 16 (2023).
[64] X. Liu, Z. Zeng, Memristor crossbar architectures for implementing deep neural networks. Complex Intell. Syst. 8, 787–802 (2022).
[65] D. Ielmini, H.-S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).
[66] S. Yu, H.Y. Chen, B. Gao, J. Kang, H.S. Wong, HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 7, 2320–2325 (2013).
[67] C.-H. Yeh, D. Zhang, W. Cao, K. Banerjee, 0.5T0.5R - introducing an ultra-compact memory cell enabled by shared graphene edge-contact and h-BN insulator, in 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2020)., 12.3.1–12.3.4
[68] H.-S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong et al., Dual-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30, 2003683 (2020).
[69] J. Xie, S. Afshari, I. SanchezEsqueda, Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine learning hardware npj 2D Mater. Appl. 6, 50 (2022).
[70] M. Naqi, M.S. Kang, N. liu, T. Kim, S. Baek, et al., Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network npj 2D Mater. Appl. 6, 53 (2022).
[71] S. Li, M.-E. Pam, Y. Li, L. Chen, Y.-C. Chien et al., Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv. Mater. 34, e2103376 (2022).
[72] Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li et al., Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).
[73] Y. Li, L. Loh, S. Li, L. Chen, B. Li et al., Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4, 348–356 (2021).
[74] M.A. Villena, F. Hui, X. Liang, Y. Shi, B. Yuan et al., Variability of metal/h-BN/metal memristors grown via chemical vapor deposition on different materials. Microelectron. Reliab. 102, 113410 (2019).
[75] J.B. Roldan, D. Maldonado, C. Aguilera-Pedregosa, F.J. Alonso, Y. Xiao et al., Modeling the variability of Au/Ti/h-BN/Au memristive devices. IEEE Trans. Electron Devices 70, 1533–1539 (2023).
[76] M.E. Pam, S. Li, T. Su, Y.C. Chien, Y. Li et al., Interface-modulated resistive switching in Mo-irradiated ReS2 for neuromorphic computing. Adv. Mater. 34, e2202722 (2022).
[77] L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019).
[78] S. Li, B. Li, X. Feng, L. Chen, Y. Li et al., Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing npj 2D Mater. Appl. 5, 1 (2021).
[79] J. Jadwiszczak, D. Keane, P. Maguire, C.P. Cullen, Y. Zhou et al., MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13, 14262–14273 (2019).
[80] D. Li, B. Wu, X. Zhu, J. Wang, B. Ryu et al., MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12, 9240–9252 (2018).
[81] L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, 1455 (2021).
[82] G. Moon, S.Y. Min, C. Han, S.H. Lee, H. Ahn et al., Atomically thin synapse networks on van der Waals photo-memtransistors. Adv. Mater. 35, e2203481 (2023).
[83] X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).
[84] N.T. Duong, Y.-C. Chien, H. Xiang, S. Li, H. Zheng et al., Dynamic ferroelectric transistor-based reservoir computing for spatiotemporal information processing. Adv. Intell. Syst. 5, 2300009 (2023).
[85] K. Liu, B. Dang, T. Zhang, Z. Yang, L. Bao et al., Multilayer reservoir computing based on ferroelectric α-In2 Se3 for hierarchical information processing. Adv. Mater. 34, e2108826 (2022).
[86] X. Feng, S. Li, S.L. Wong, S. Tong, L. Chen et al., Self-selective multi-terminal memtransistor crossbar array for In-memory computing. ACS Nano 15, 1764–1774 (2021).
[87] J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W. Hsu, T.-H. Hou, One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications, in 2011 International Electron Devices Meeting. Washington, DC, USA. IEEE, (2011)., 31.7.1–31.7.4
[88] K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992–12022 (2017).
[89] K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023).
[90] B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022).
[91] R. Yue, A.T. Barton, H. Zhu, A. Azcatl, L.F. Pena et al., HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9, 474–480 (2015).
[92] M.J. Mleczko, C. Zhang, H.R. Lee, H.H. Kuo, B. Magyari-Köpe et al., HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, e1700481 (2017).
[93] V.G. Pleshchev, N.V. Selezneva, N.V. Baranov, Influence of copper intercalation on the resistive state of compounds in the Cu-HfSe2 system. Phys. Solid State 54, 716–721 (2012).
[94] V.G. Pleshchev, N.V. Melnikova, N.V. Baranov, Relaxation processes in an alternating-current electric field and energy loss mechanisms in hafnium diselenide cointercalated with copper and silver atoms. Phys. Solid State 58, 1758–1763 (2016).
[95] L. Liu, Y. Li, X. Huang, J. Chen, Z. Yang et al., Low-power memristive logic device enabled by controllable oxidation of 2D HfSe2 for In-memory computing. Adv. Sci. 8, e2005038 (2021).
[96] Y. Wang, F. Wu, X. Liu, J. Lin, J.-Y. Chen et al., High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl. Phys. Lett. 115, 193503 (2019).
[97] H. Zhou, V. Sorkin, S. Chen, Z. Yu, K.-W. Ang et al., Design-dependent switching mechanisms of schottky-barrier-modulated memristors based on 2D semiconductor. Adv. Electron. Mater. 9, 2201252 (2023).
[98] Q. Fang, X. Zhao, C. Xia, F. Ma, Interfacial defect engineering on electronic states and electrical properties of MoS2/metal contacts. J. Alloys Compd. 864, 158134 (2021).
[99] W.S. Yun, J.D. Lee, Schottky barrier tuning of the single-layer MoS2 on magnetic metal substrates through vacancy defects and hydrogenation. Phys. Chem. Chem. Phys. 18, 31027–31032 (2016).
[100] J. Yuan, S.E. Liu, A. Shylendra, W.A. Gaviria Rojas, S. Guo et al., Reconfigurable MoS2 memtransistors for continuous learning in spiking neural networks. Nano Lett. 21, 6432–6440 (2021).
[101] L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang et al., 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).
[102] A. Sebastian, R. Pendurthi, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks. Nat. Commun. 13, 6139 (2022).
[103] S. Hao, X. Ji, S. Zhong, K.Y. Pang, K.G. Lim et al., A monolayer leaky integrate-and-fire neuron for 2D memristive neuromorphic networks. Adv. Electron. Mater. 6, 1901335 (2020).
[104] K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).
[105] F. Miao, J. JoshuaYang, I. Valov, Y. Chai, Editorial: focus issue on 2D materials for neuromorphic computing. Neuromorph. Comput. Eng. 3, 010201 (2023).
[106] R. Hasan, T.M. Taha, C. Yakopcic, On-chip training of memristor crossbar based multi-layer neural networks. Microelectron. J. 66, 31–40 (2017).
[107] Y. Shen, W. Zheng, K. Zhu, Y. Xiao, C. Wen et al., Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv. Mater. 33, e2103656 (2021).
[108] The International Roadmap For Devices and Systems: 2022, https://irds.ieee.org/images/files/pdf/2022/2022IRDS_BC.pdf. Accessed 8 Nov 22
[109] B. Yuan, X. Liang, L. Zhong, Y. Shi, F. Palumbo et al., 150nm × 200nm cross-point hexagonal boron nitride-based memristors. Adv. Electron. Mater. 6, 1900115 (2020).
[110] Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 (2022).
[111] A. Krishnaprasad, D. Dev, S.S. Han, Y. Shen, H.S. Chung et al., MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano 16, 2866–2876 (2022).
[112] J.B. Roldan, D. Maldonado, C. Aguilera-Pedregosa, E. Moreno, F. Aguirre et al. Spiking neural networks based on two-dimensional materials npj 2D Mater. Appl. 6, 63 (2022).
[113] K. Wang, L. Li, R. Zhao, J. Zhao, Z. Zhou et al., A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 6, 1901342 (2020).
[114] M. Lanza, G. Molas, I. Naveh, The gap between academia and industry in resistive switching research. Nat. Electron. 6, 260–263 (2023).
[115] Y.-C. Chien, H. Xiang, J. Wang, Y. Shi, X. Fong et al., Attack resilient true random number generators using ferroelectric-enhanced stochasticity in 2D transistor. Small 19, e2302842 (2023).
[116] X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021).
[117] S.A. Van, Building blocks for electronic spiking neural networks. Neural Netw. 14, 617–628 (2001).
[118] D. Dev, A. Krishnaprasad, M.S. Shawkat, Z. He, S. Das et al., 2D MoS2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 41, 936–939 (2020).
[119] Z. Zhang, S. Gao, Z. Li, Y. Xu, R. Yang et al., Artificial LIF neuron with bursting behavior based on threshold switching device. IEEE Trans. Electron Devices 70, 1374–1379 (2023).
[120] H. Kalita, A. Krishnaprasad, N. Choudhary, S. Das, D. Dev et al., Artificial neuron using vertical MoS2/graphene threshold switching memristors. Sci. Rep. 9, 53 (2019).
[121] A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).
[122] S. Fu, J.-H. Park, H. Gao, T. Zhang, X. Ji et al., Two-terminal MoS2 memristor and the homogeneous integration with a MoS2 transistor for neural networks. Nano Lett. 23, 5869–5876 (2023).
[123] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).
[124] X. Wang, P. Xie, B. Chen, X. Zhang, Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14, 221 (2022).
[125] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).
[126] Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15, 221 (2023).
[127] Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023).
[128] R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14, 139 (2022).
[129] S.W. Cho, C. Jo, Y.H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022).
[130] Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022).
[131] J. Zeng, J. Zhao, T. Bu, G. Liu, Y. Qi et al., A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 15, 18 (2022).
[132] K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022).
[133] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556.
[134] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, (2016), 779–788.
[135] H. Chen, T. Wan, Y. Zhou, J. Yan, C. Chen et al., Highly nonlinear memory selectors with ultrathin MoS2/WSe2/MoS2 heterojunction. Adv. Funct. Mater. (2023).
[136] R. Midya, Z. Wang, J. Zhang, S.E. Savel’ev, C. Li et al., Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017).