• Acta Optica Sinica
  • Vol. 43, Issue 1, 0114002 (2023)
Anke Zhao1, Ning Jiang1,*, Chao Wang2, Shiqin Liu1, and Kun Qiu1
Author Affiliations
  • 1School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 2Institute of Spacecraft Application System Engineering, China Academy of Space Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/AOS220994 Cite this Article Set citation alerts
    Anke Zhao, Ning Jiang, Chao Wang, Shiqin Liu, Kun Qiu. Synchronization Optimization of Chaotic Laser Based on Generative Adversarial Network[J]. Acta Optica Sinica, 2023, 43(1): 0114002 Copy Citation Text show less
    References

    [1] Ohtsubo J[M]. Semiconductor lasers: stability, instability and Chaos(2017).

    [2] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).

    [3] Zhang Y T, Jia Z W, Li Q T et al. Broadband chaos signal generation based on dual-mode DFB laser with optical feedback[J]. Acta Optica Sinica, 41, 2114001(2021).

    [4] Li P, Cai Q, Zhang J G et al. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter[J]. Optics Express, 27, 17859-17867(2019).

    [5] Argyris A, Syvridis D, Larger L et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 438, 343-346(2005).

    [6] Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications[J]. IEEE Journal of Quantum Electronics, 46, 1430-1435(2010).

    [7] Ke J X, Yi L L, Xia G Q et al. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate[J]. Optics Letters, 43, 1323-1326(2018).

    [8] Yang Z, Yi L L, Ke J X et al. Chaotic optical communication over 1000 km transmission by coherent detection[J]. Journal of Lightwave Technology, 38, 4648-4655(2020).

    [9] Gao X J, Cheng M F, Deng L et al. Robust chaotic-shift-keying scheme based on electro-optical hybrid feedback system[J]. Optics Express, 28, 10847-10858(2020).

    [10] Wang L S, Mao X X, Wang A B et al. Scheme of coherent optical chaos communication[J]. Optics Letters, 45, 4762-4765(2020).

    [11] Jiang N, Zhao A K, Xue C P et al. Physical secure optical communication based on private chaotic spectral phase encryption/decryption[J]. Optics Letters, 44, 1536-1539(2019).

    [12] Zhao A K, Jiang N, Liu S Q et al. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling[J]. Journal of Lightwave Technology, 39, 2288-2295(2021).

    [13] Kanter I, Butkovski M, Peleg Y et al. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography[J]. Optics Express, 18, 18292-18302(2010).

    [14] Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [15] Sasaki T, Kakesu I, Mitsui Y et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 25, 26029-26044(2017).

    [16] Gao H, Wang A B, Wang L S et al. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry-Perot lasers[J]. Light: Science & Applications, 10, 172(2021).

    [17] Li N Q, Kim B, Chizhevsky V N et al. Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser[J]. Optics Express, 22, 6634-6646(2014).

    [18] Xiang S Y, Wang B, Wang Y et al. 2.24-Tb/s physical random bit generation with minimal post-processing based on chaotic semiconductor lasers network[J]. Journal of Lightwave Technology, 37, 3987-3993(2019).

    [19] Xue C P, Jiang N, Lü Y X et al. Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems[J]. IEEE Transactions on Communications, 65, 312-319(2017).

    [20] Li P, Guo Y, Guo Y Q et al. Ultrafast fully photonic random bit generator[J]. Journal of Lightwave Technology, 36, 2531-2540(2018).

    [21] Shannon C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 28, 656-715(1949).

    [22] Gisin N, Ribordy G, Tittel W et al. Quantum cryptography[J]. Reviews of Modern Physics, 74, 145-195(2002).

    [23] Xu F H, Ma X F, Zhang Q et al. Secure quantum key distribution with realistic devices[J]. Reviews of Modern Physics, 92, 025002(2020).

    [24] Argyris A, Pikasis E, Syvridis D. Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators[J]. Journal of Lightwave Technology, 34, 5325-5331(2016).

    [25] Li X Z, Li S S, Chan S C. Correlated random bit generation using chaotic semiconductor lasers under unidirectional optical injection[J]. IEEE Photonics Journal, 9, 1505411(2017).

    [26] Zhao Z X, Cheng M F, Luo C K et al. Synchronized random bit sequences generation based on analog-digital hybrid electro-optic chaotic sources[J]. Journal of Lightwave Technology, 36, 4995-5002(2018).

    [27] Zhao A K, Jiang N, Wang Y J et al. Correlated random bit generation based on common-signal-induced synchronization of wideband complex physical entropy sources[J]. Optics Letters, 44, 5957-5960(2019).

    [28] Wang L S, Wang D M, Gao H et al. Real-time 2.5-Gb/s correlated random bit generation using synchronized chaos induced by a common laser with dispersive feedback[J]. IEEE Journal of Quantum Electronics, 56, 2000208(2020).

    [29] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[EB/OL]. https://arxiv.org/abs/1406.2661

    [30] Maskin E. Nash equilibrium and welfare optimality[J]. The Review of Economic Studies, 66, 23-38(1999).

    [31] Rontani D, Locquet A, Sciamanna M et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 45, 1879-1891(2009).

    [32] Li S S, Li X Z, Chan S C. Chaotic time-delay signature suppression with bandwidth broadening by fiber propagation[J]. Optics Letters, 43, 4751-4754(2018).

    [33] Zhao A K, Jiang N, Zhang Y Q et al. Semiconductor laser-based multi-channel wideband chaos generation using optoelectronic hybrid feedback and parallel filtering[J]. Journal of Lightwave Technology, 40, 751-761(2022).

    [34] Zhang Y N, Xu A S, Feng Y L et al. Chaos characteristics of the output from a semiconductor laser subject to optoelectronic feedback[J]. Acta Optica Sinica, 40, 1214001(2020).

    [35] Zunino L, Soriano M C, Fischer I et al. Permutation-information-theory approach to unveil delay dynamics from time-series analysis[J]. Physical Review E, 82, 046212(2010).

    [36] Zhou P, Fang Q, Li N Q. Phased-array assisted time-delay signature suppression in the optical chaos generated by an external-cavity semiconductor laser[J]. Optics Letters, 45, 399-402(2020).

    [37] Zhao A K, Jiang N, Liu S Q et al. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback[J]. Optics Express, 27, 12336-12348(2019).

    [38] Xue P P, Zhang J Z, Yang L Z et al. Chaotic synchronization and optimization of semiconductor ring lasers[J]. Acta Optica Sinica, 35, 0414002(2015).

    Anke Zhao, Ning Jiang, Chao Wang, Shiqin Liu, Kun Qiu. Synchronization Optimization of Chaotic Laser Based on Generative Adversarial Network[J]. Acta Optica Sinica, 2023, 43(1): 0114002
    Download Citation