• Photonics Research
  • Vol. 12, Issue 3, A11 (2024)
Shuqing Lin1, Yanfeng Zhang1,2,*, Zhaoyang Wu1, Shihao Zeng1..., Qing Gao1, Jiaqi Li1, Xiaoqun Yu1 and Siyuan Yu1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Hefei National Laboratory, Hefei 230088, China
  • show less
    DOI: 10.1364/PRJ.507548 Cite this Article Set citation alerts
    Shuqing Lin, Yanfeng Zhang, Zhaoyang Wu, Shihao Zeng, Qing Gao, Jiaqi Li, Xiaoqun Yu, Siyuan Yu, "Power-efficient programmable integrated multiport photonic interferometer in CMOS-compatible silicon nitride," Photonics Res. 12, A11 (2024) Copy Citation Text show less
    References

    [1] K. Yamada. Advanced silicon photonics for post-Moore era. 42nd European Conference on Optical Communication-ECOC, 1-3(2016).

    [2] K. Kitayama, M. Notomi, M. Naruse. Novel frontier of photonics for data processing—photonic accelerator. APL Photonics, 4, 090901(2019).

    [3] H.-S. Zhong, H. Wang, Y.-H. Deng. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [4] J. M. Arrazola, E. Diamanti, I. Kerenidis. Quantum superiority for verifying NP-complete problems with linear optics. npj Quantum Inf., 4, 56(2018).

    [5] J. Carolan, C. Harrold, C. Sparrow. Universal linear optics. Science, 349, 711-716(2015).

    [6] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [7] P. L. Mennea, W. R. Clements, D. H. Smith. Modular linear optical circuits. Optica, 5, 1087-1090(2018).

    [8] N. C. Harris, J. Carolan, D. Bunandar. Linear programmable nanophotonic processors. Optica, 5, 1623-1631(2018).

    [9] M. Reck, A. Zeilinger, H. J. Bernstein. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [10] W. R. Clements, P. C. Humphreys, B. J. Metcalf. Optimal design for universal multiport interferometers. Optica, 3, 1460-1465(2016).

    [11] D. A. B. Miller. Self-configuring universal linear optical component [Invited]. Photonics Res., 1, 1-15(2013).

    [12] D. A. B. Miller. Setting up meshes of interferometers–reversed local light interference method. Opt. Express, 25, 29233-29248(2017).

    [13] J. Capmany, I. Gasulla, D. Pérez. The programmable processor. Nat. Photonics, 10, 6-8(2016).

    [14] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [15] H. Zhang, M. Gu, X. D. Jiang. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [16] L. De Marinis, M. Cococcioni, O. Liboiron-Ladouceur. Photonic integrated reconfigurable linear processors as neural network accelerators. Appl. Sci., 11, 6232(2021).

    [17] A. Annoni, E. Guglielmi, M. Carminati. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl., 6, e17110(2017).

    [18] W. Zhang, X. Jiang, W. Gu. On-chip photonic spatial-temporal descrambler. Chip, 2, 100043(2023).

    [19] N. C. Harris, G. R. Steinbrecher, M. Prabhu. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics, 11, 447-452(2017).

    [20] C. Taballione, T. A. W. Wolterink, J. Lugani. 8 × 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express, 27, 26842-26857(2019).

    [21] C. Taballione, R. van der Meer, H. J. Snijders. A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol., 1, 035002(2021).

    [22] C. Taballione, M. C. Anguita, M. de Goede. 20-mode universal quantum photonic processor. Quantum, 7, 1071(2023).

    [23] A. Ribeiro, A. Ruocco, L. Vanacker. Demonstration of a 4 × 4-port universal linear circuit. Optica, 3, 1348-1357(2016).

    [24] D. Llewellyn, Y. Ding, I. I. Faruque. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys., 16, 148-153(2020).

    [25] https://www.ligentec.com/technology/#applications. https://www.ligentec.com/technology/#applications

    [26] J. M. Arrazola, V. Bergholm, K. Brádler. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591, 54-60(2021).

    [27] X. Sun, J. Feng, L. Zhong. Silicon nitride based polarization-independent 4 × 4 optical matrix switch. Opt. Laser Technol., 119, 105641(2019).

    [28] D. Zheng, J. D. Doménech, W. Pan. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Opt. Lett., 44, 2629-2632(2019).

    [29] S. Liu, J. Feng, Y. Tian. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron., 15, 9(2022).

    [30] P. Sun, R. M. Reano. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express, 18, 8406-8411(2010).

    [31] Z. Lu, K. Murray, H. Jayatilleka. Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption. IEEE Photonics Technol. Lett., 27, 2319-2322(2015).

    [32] D. Celo, D. J. Goodwill, J. Jiang. Thermo-optic silicon photonics with low power and extreme resilience to over-drive. IEEE Optical Interconnects Conference, 26-27(2016).

    [33] Q. Fang, J. F. Song, T.-Y. Liow. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol. Lett., 23, 525-527(2011).

    [34] A. Masood, M. Pantouvaki, G. Lepage. Comparison of heater architectures for thermal control of silicon photonic circuits. 10th International Conference on Group IV Photonics, 83-84(2013).

    [35] Z. Wu, Y. Zhang, S. Zeng. Low-noise Kerr frequency comb generation with low temperature deuterated silicon nitride waveguides. Opt. Express, 29, 29557-29566(2021).

    [36] Y. Xie, J. Li, Y. Zhang. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators. Photonics Res., 10, 1290-1296(2022).

    [37] V. D. Vaidya, B. Morrison, L. G. Helt. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv., 6, eaba9186(2020).

    [38] Y. Zhao, Y. Okawachi, J. K. Jang. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett., 124, 193601(2020).

    [39] A. Vijay, J. M. Kahn. Effect of higher-order modal dispersion in direct-detection mode-division-multiplexed links. J. Lightwave Technol., 41, 1670-1683(2023).

    [40] M. Jacques, A. Samani, E. El-Fiky. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express, 27, 10456-10471(2019).

    [41] S. De, R. Das, R. K. Varshney. CMOS-compatible photonic phase shifters with extremely low thermal crosstalk performance. J. Lightwave Technol., 39, 2113-2122(2021).

    [42] M. A. Al-Qadasi, L. Chrostowski, B. J. Shastri. Scaling up silicon photonic-based accelerators: challenges and opportunities. APL Photonics, 7, 020902(2022).

    [43] C. Alexiev, J. C. C. Mak, W. D. Sacher. Calibrating rectangular interferometer meshes with external photodetectors. OSA Contin., 4, 2892-2904(2021).

    [44] G. Rubino, L. A. Rozema, F. Massa. Experimental entanglement of temporal order. Quantum, 6, 621(2022).

    [45] L.-T. Feng, M. Zhang, D. Liu. On-chip quantum interference between the origins of a multi-photon state. Optica, 10, 105-109(2023).

    [46] A. Babazadeh, M. Erhard, F. Wang. High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett., 119, 180510(2017).

    Shuqing Lin, Yanfeng Zhang, Zhaoyang Wu, Shihao Zeng, Qing Gao, Jiaqi Li, Xiaoqun Yu, Siyuan Yu, "Power-efficient programmable integrated multiport photonic interferometer in CMOS-compatible silicon nitride," Photonics Res. 12, A11 (2024)
    Download Citation