• Nano-Micro Letters
  • Vol. 16, Issue 1, 220 (2024)
Tian Wang1,†, Meng Li1,†, Hongxing Xu1,†, Xiao Wang1..., Mingshu Jia1, Xianguang Hou1, Shuai Gao1, Qingman Liu1, Qihang Yang4, Mingwei Tian1, Lijun Qu1, Zhenhua Song2,*, Xiaohu Wu3,**, Lili Wang1,*** and Xiansheng Zhang1,****|Show fewer author(s)
Author Affiliations
  • 1Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, People’s Republic of China
  • 2Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
  • 3Shandong Institute of Advanced Technology, Jinan, 250100, People’s Republic of China
  • 4College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01433-1 Cite this Article
    Tian Wang, Meng Li, Hongxing Xu, Xiao Wang, Mingshu Jia, Xianguang Hou, Shuai Gao, Qingman Liu, Qihang Yang, Mingwei Tian, Lijun Qu, Zhenhua Song, Xiaohu Wu, Lili Wang, Xiansheng Zhang. MXene Sediment-Based Poly(vinyl alcohol)/Sodium Alginate Aerogel Evaporator with Vertically Aligned Channels for Highly Efficient Solar Steam Generation[J]. Nano-Micro Letters, 2024, 16(1): 220 Copy Citation Text show less
    References

    [1] A. Ruhi, M.L. Messager, J.D. Olden, Tracking the pulse of the earth’s fresh waters. Nat. Sustain. 1(4), 198–203 (2018).

    [2] J. Liu, H. Yang, S.N. Gosling, M. Kummu, M. Florke et al., Water scarcity assessments in the past, present and future. Earths Future 5(6), 545–559 (2017).

    [3] F.E. Ahmed, A. Khalil, N. Hilal, Emerging desalination technologies: current status, challenges and future trends. Desalination 517, 115183 (2021).

    [4] J. Wang, S.Y. Lai, Y. He, Research on reverse osmosis membrane materials for seawater desalination. Adv. Mater. Res. 600, 100–103 (2012).

    [5] X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2(7), 1331–1338 (2018).

    [6] Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2(6), 1171–1186 (2018).

    [7] L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 8(16), 1171–1186 (2018).

    [8] L. Zhou, X. Li, G.W. Ni, S. Zhu, J. Zhu, The revival of thermal utilization from the sun: interfacial solar vapor generation. Natl. Sci. Rev. 6(3), 562–578 (2019).

    [9] L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020).

    [10] Z. Lei, S. Zhu, X. Sun, S. Yu, X. Liu et al., A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32(40), 2205790 (2022).

    [11] M. Khatri, L. Francis, N. Hilal, Modified electrospun membranes using different nanomaterials for membrane distillation. Membranes (Basel) 13(3), 338 (2023).

    [12] D. Hao, Y. Yang, B. Xu, Z. Cai, Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization. Appl. Therm. Eng. 141, 406–412 (2018).

    [13] C. Wang, S.L. Zhou, C. Wu, Z.H. Yang, X.H. Zhang, Janus carbon nanotube sponges for highly efficient solar-driven vapor generation. Chem. Eng. J. 454, 140501 (2023).

    [14] Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32(11), e1907061, (2020).

    [15] W.J. Ma, T. Lu, W.X. Cao, R.H. Xiong, C.B. Huang, Bioinspired nanofibrous aerogel with vertically aligned channels for efficient water purification and salt-rejecting solar desalination. Adv. Funct. Mater. 33(23), 2214157 (2023).

    [16] F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023).

    [17] A. Lamy-Mendes, R.F. Silva, L. Durães, Advances in carbon nanostructure–silica aerogel composites: a review. J. Mater. Chem. A 6(4), 1340–1369 (2018).

    [18] M. Rastgar, L. Jiang, C. Wang, M. Sadrzadeh, Aerogels in passive solar thermal desalination: a review. J. Mater. Chem. A 10(35), 17857–17877 (2022).

    [19] X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 113(49), 13953–13958 (2016).

    [20] Y. Li, T. Gao, Z. Yang, C. Chen, Y. Kuang et al., Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 41, 201–209 (2017).

    [21] M. Morciano, M. Fasano, U. Salomov, L. Ventola, E. Chiavazzo et al., Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Sci. Rep. 7(1), 11970 (2017).

    [22] K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    [23] X. Wang, G. Ou, N. Wang, H. Wu, Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 8(14), 9194–9199 (2016).

    [24] Q. Jiang, H. Gholami Derami, D. Ghim, S. Cao, Y.-S. Jun et al., Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5(35), 18397–18402 (2017).

    [25] J.R. Vélez-Cordero, J. Hernández-Cordero, Heat generation and conduction in pdms-carbon nanoparticle membranes irradiated with optical fibers. Int. J. Therm. Sci. 96, 12–22 (2015).

    [26] I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. (2020).

    [27] J.H. Kim, G.S. Park, Y.J. Kim, E. Choi, J. Kang et al., Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano 15(5), 8860–8869 (2021).

    [28] D.-D. Shao, Q. Zhang, L. Wang, Z.-Y. Wang, Y.-X. Jing et al., Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving. J. Membr. Sci. 623, 119033 (2021).

    [29] M.C. Krecker, D. Bukharina, C.B. Hatter, Y. Gogotsi, V.V. Tsukruk, Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30(43), 2004554 (2020).

    [30] Z. Li, C. Wang, Novel advances in metal-based solar absorber for photothermal vapor generation. Chin. Chem. Lett. 31(9), 2159–2166 (2020).

    [31] G. He, F. Ning, X. Liu, Y. Meng, Z. Lei et al., High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications. Adv. Fiber Mater. 6, 367–386 (2024).

    [32] M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020).

    [33] Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020).

    [34] M. Yuan, L. Wang, X. Liu, X. Du, G. Zhang et al., 3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment. Chem. Eng. J. 451, 138686 (2023).

    [35] J. Ma, K. Yang, Y. Jiang, L. Shen, H. Ma et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep. Phys. Sci. 3(6), 100908 (2022).

    [36] Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3d skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), e1704044 (2018).

    [37] J. Chang, B. Pang, H. Zhang, K. Pang, M. Zhang et al., MXene/cellulose composite cloth for integrated functions (if-cloth) in personal heating and steam generation. Adv. Fiber Mater. 6(1), 252–263 (2023).

    [38] J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016).

    [39] Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene -decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021).

    [40] X.Y. Zhou, F. Zhao, Y.H. Guo, B. Rosenberger, G.H. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), 5484 (2019).

    [41] M. Sun, H. Yang, X. Wang, X. Gao, C. Wang et al., Wood-inspired anisotropic PU/chitosan/ MXene aerogel used as an enhanced solar evaporator with superior salt-resistance. Desalination 555, 116462 (2023).

    [42] M.N.A.S. Ivan, S. Saha, A.M. Saleque, S. Ahmed, A.K. Thakur et al., Progress in interfacial solar steam generation using low-dimensional and biomass-derived materials. Nano Energy 120, 109176 (2024).

    [43] F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023).

    [44] W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021).

    [45] W. Bao, X. Tang, X. Guo, S. Choi, C. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4), 778–787 (2018).

    [46] M.N.A.S. Ivan, A.M. Saleque, S. Ahmed, P.K. Cheng, J. Qiao et al., Waste egg tray and toner-derived highly efficient 3D solar evaporator for freshwater generation. ACS Appl. Mater. Interfaces 14(6), 7936–7948 (2022).

    [47] C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5(3), 791–818 (2022).

    [48] M. Zhang, M.N.A.S. Ivan, Y. Sun, Z. Li, S. Saha et al., A platinum-based photothermal polymer with intermolecular/ligand-to-ligand charge transfer for efficient and sustainable solar-powered desalination. J. Mater. Chem. A 12, 9055–9065 (2024).

    [49] M.N.A.S. Ivan, A.M. Saleque, S. Ahmed, Z.L. Guo, D. Zu et al., Jute stick derived self-regenerating sustainable solar evaporators with different salt mitigation mechanisms for highly efficient solar desalination. J. Mater. Chem. A 11(8), 3961–3974 (2023).

    [50] X. Han, S. Ding, L. Fan, Y. Zhou, S. Wang, Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 9(34), 18614–18622 (2021).

    [51] B. Liu, L. Yu, F. Yu, J. Ma, In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability. Desalination 500, 114897 (2021).

    [52] R. Malik, Maxing out water desalination with MXenes. Joule 2(4), 591–593 (2018).

    [53] X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020).

    [54] Y. Wang, Y. Wan, X. Meng, L. Jiang, H. Wei et al., Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J. Mate. Sci. 57(29), 13962–13973 (2022).

    [55] Y. Yang, W. Fan, S. Yuan, J. Tian, G. Chao et al., A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. J. Mater. Chem. A. 9(42), 23968–23976 (2021).

    [56] Z. Yu, P. Wu, Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation. Adv. Mater. Technol. 5(6), 2000065 (2020).

    [57] Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned janus MXene -based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13(11), 13196–13207 (2019).

    [58] X.P. Li, X.F. Li, H.G. Li, Y. Zhao, W. Li et al., 2D ferrous ion-crosslinked Ti3C2Tx MXene aerogel evaporators for efficient solar steam generation. Adv. Sustain. Syst. 5(12), 2100263 (2021).

    [59] H. Gao, N.C. Bing, Z.J. Bao, H.Q. Xie, W. Yu, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem. Eng. J. 454, 140362 (2023).

    [60] C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023).

    Tian Wang, Meng Li, Hongxing Xu, Xiao Wang, Mingshu Jia, Xianguang Hou, Shuai Gao, Qingman Liu, Qihang Yang, Mingwei Tian, Lijun Qu, Zhenhua Song, Xiaohu Wu, Lili Wang, Xiansheng Zhang. MXene Sediment-Based Poly(vinyl alcohol)/Sodium Alginate Aerogel Evaporator with Vertically Aligned Channels for Highly Efficient Solar Steam Generation[J]. Nano-Micro Letters, 2024, 16(1): 220
    Download Citation