• Nano-Micro Letters
  • Vol. 16, Issue 1, 188 (2024)
Afsana Sheikh1,†, Prashant Kesharwani1,†,*, Waleed H. Almalki2..., Salem Salman Almujri3, Linxin Dai4, Zhe-Sheng Chen5, Amirhossein Sahebkar6,7 and Fei Gao4,**|Show fewer author(s)
Author Affiliations
  • 1Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
  • 2Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University Makkah, Saudi Arabia
  • 3Department of Pharmacology, College of Pharmacy, King Khalid University, 61421 Asir-Abha, Saudi Arabia
  • 4State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People’s Republic of China
  • 5Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York 11439, USA
  • 6Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad, Iran
  • 7Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
  • show less
    DOI: 10.1007/s40820-024-01399-0 Cite this Article
    Afsana Sheikh, Prashant Kesharwani, Waleed H. Almalki, Salem Salman Almujri, Linxin Dai, Zhe-Sheng Chen, Amirhossein Sahebkar, Fei Gao. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy[J]. Nano-Micro Letters, 2024, 16(1): 188 Copy Citation Text show less
    References

    [1] D.-W. Zheng, Q. Lei, J.-Y. Zhu, J.-X. Fan, C.-X. Li et al., Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett. 17, 284–291 (2017).

    [2] M.J. Davis, B.H. Ha, E.C. Holman, R. Halaban, J. Schlessinger et al., RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc. Natl. Acad. Sci. U.S.A. 110, 912–917 (2013).

    [3] S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    [4] C. Cerella, C. Grandjenette, M. Dicato, M. Diederich, Roles of apoptosis and cellular senescence in cancer and aging. Curr. Drug Targets 17, 405–415 (2016).

    [5] A. Sheikh, N.A. Alhakamy, S. Md, P. Kesharwani, Recent progress of RGD modified liposomes as multistage rocket against cancer. Front. Pharmacol. 12, 803304 (2022).

    [6] M. Ishibashi, H. Tamura, M. Sunakawa, A. Kondo-Onodera, N. Okuyama et al., Myeloma drug resistance induced by binding of myeloma B7–H1 (PD-L1) to PD-1. Cancer Immunol. Res. 4, 779–788 (2016).

    [7] Z. Su, Z. Yang, L. Xie, J.P. DeWitt, Y. Chen, Cancer therapy in the necroptosis era. Cell Death Differ. 23, 748–756 (2016).

    [8] W.S. Yang, B.R. Stockwell, Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26, 165–176 (2016).

    [9] C. Nathan, A. Cunningham-Bussel, Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013).

    [10] W.S. Yang, R. SriRamaratnam, M.E. Welsch, K. Shimada, R. Skouta et al., Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    [11] L. Jiang, N. Kon, T. Li, S.-J. Wang, T. Su et al., Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    [12] A. Manohar, J. Park, D.D. Geleta, C. Krishnamoorthi, R. Thangam et al., Synthesis and characterization of ZnO nanoparticles for photocatalysis, antibacterial and cytotoxicity in kidney cancer (A498) cell lines. J. Alloys Compd. 874, 159868 (2021).

    [13] H. Deng, J. Zhang, Y. Yang, J. Yang, Y. Wei et al., Chemodynamic and photothermal combination therapy based on dual-modified metal-organic framework for inducing tumor ferroptosis/pyroptosis. ACS Appl. Mater. Interfaces 14, 24089–24101 (2022).

    [14] L. Yu, Y. Xu, Z. Pu, H. Kang, M. Li et al., Photocatalytic superoxide radical generator that induces pyroptosis in cancer cells. J. Am. Chem. Soc. 144, 11326–11337 (2022).

    [15] Y. Du, J. Yang, F. He, X. Zhao, J. Zhou et al., Revealing the mutually enhanced mechanism of necroptosis and immunotherapy induced by defect engineering and piezoelectric effect. Adv. Mater. 36, e2304322 (2024).

    [16] P. Zheng, B. Ding, G. Zhu, C. Li, J. Lin, Biodegradable Ca2+ nanomodulators activate pyroptosis through mitochondrial Ca2+ overload for cancer immunotherapy. Angew. Chem. Int. Ed. 61, e202204904 (2022).

    [17] S.-J. Wang, D. Li, Y. Ou, L. Jiang, Y. Chen et al., Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17, 366–373 (2016).

    [18] Y. Xie, W. Hou, X. Song, Y. Yu, J. Huang et al., Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016).

    [19] S. Mukherjee, S. Mukherjee, M.A.S. Abourehab, A. Sahebkar, P. Kesharwani, Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur. Polym. J. 177, 111471 (2022).

    [20] Y. Du, R. Zhang, J. Yang, S. Liu, J. Zhou et al., A “closed-loop” therapeutic strategy based on mutually reinforced ferroptosis and immunotherapy. Adv. Funct. Mater. 32, 2111784 (2022).

    [21] K. Zhang, Z. Ma, S. Li, Y. Wu, J. Zhang et al., Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials 284, 121502 (2022).

    [22] H. Tang, D. Chen, C. Li, C. Zheng, X. Wu et al., Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int. J. Pharm. 572, 118782 (2019).

    [23] P. Kesharwani, R.K. Tekade, V. Gajbhiye, K. Jain, N.K. Jain, Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomed. Nanotechnol. Biol. Med. 7, 295–304 (2011).

    [24] A. Sheikh, S. Md, N.A. Alhakamy, P. Kesharwani, Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. Int. J. Pharm. 620, 121751 (2022).

    [25] A. Sheikh, P. Kesharwani, An insight into aptamer engineered dendrimer for cancer therapy. Eur. Polym. J. 159, 110746 (2021).

    [26] P. Kesharwani, A. Sheikh, M.A.S. Abourehab, R. Salve, V. Gajbhiye, A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy. J. Drug Deliv. Sci. Technol. 80, 104164 (2023).

    [27] P. Kesharwani, K. Jain, N.K. Jain, Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 39, 268–307 (2014).

    [28] P. Kesharwani, V. Gajbhiye, N.K. Jain, A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 33, 7138–7150 (2012).

    [29] P. Kesharwani, A.K. Iyer, Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 20, 536–547 (2015).

    [30] R.A. Bapat, T.V. Chaubal, C.P. Joshi, P.R. Bapat, H. Choudhury et al., An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 881–898 (2018).

    [31] P. Kesharwani, S. Banerjee, U. Gupta, M.C.I. Mohd Amin, S. Padhye et al., PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today 18, 565–572 (2015).

    [32] A.K. Sharma, A. Gothwal, P. Kesharwani, H. Alsaab, A.K. Iyer et al., Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today 22, 314–326 (2017).

    [33] P. Kesharwani, B. Gorain, S.Y. Low, S.A. Tan, E.C.S. Ling et al., Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract. 136, 52–77 (2018).

    [34] P. Kesharwani, A. Gothwal, A.K. Iyer, K. Jain, M.K. Chourasia et al., Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov. Today 23, 300–314 (2018).

    [35] P. Kesharwani, H. Choudhury, J.G. Meher, M. Pandey, B. Gorain, Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog. Mater. Sci. 103, 484–508 (2019).

    [36] P. Kesharwani, R. Ghanghoria, N.K. Jain, Carbon nanotube exploration in cancer cell lines. Drug Discov. Today 17, 1023–1030 (2012).

    [37] P. Kesharwani, V. Mishra, N.K. Jain, Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov. Today 20, 1049–1060 (2015).

    [38] M. Yuan, M. Kermanian, T. Agarwal, Z. Yang, S. Yousefiasl et al., Defect engineering in biomedical sciences. Adv. Mater. 35, e2304176 (2023).

    [39] R. Jiang, X. Li, D. Hu, M. Zhu, D. Zhou et al., Rapamycin-reinforced ferroptosis assisted by a lysosome-controlled disintegratable micelle in autophagy-dependent/independent manners. Appl. Mater. Today 23, 101066 (2021).

    [40] G. Zhu, H. Chi, M. Liu, Y. Yin, H. Diao et al., Multifunctional “ball-rod” Janus nanoparticles boosting Fenton reaction for ferroptosis therapy of non-small cell lung cancer. J. Colloid Interface Sci. 621, 12–23 (2022).

    [41] H. Zheng, J. Jiang, S. Xu, W. Liu, Q. Xie et al., Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale 13, 2266–2285 (2021).

    [42] H. Yu, J. Yan, Z. Li, L. Yang, F. Ju et al., Recent trends in emerging strategies for ferroptosis-based cancer therapy. Nanoscale Adv. 5, 1271–1290 (2023).

    [43] C. Zhang, X. Liu, S. Jin, Y. Chen, R. Guo, Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol. Cancer 21, 47 (2022).

    [44] C. Qiao, H. Wang, Q. Guan, M. Wei, Z. Li, Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: insights and future perspectives. Asian J. Pharm. Sci. 17, 613–629 (2022).

    [45] K. Liu, L. Huang, S. Qi, S. Liu, W. Xie et al., Ferroptosis: the entanglement between traditional drugs and nanodrugs in tumor therapy. Adv. Healthc. Mater. 12, 2203085 (2023).

    [46] G. Lei, L. Zhuang, B. Gan, Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 22, 381–396 (2022).

    [47] N. Kang, S. Son, S. Min, H. Hong, C. Kim et al., Stimuli-responsive ferroptosis for cancer therapy. Chem. Soc. Rev. 52, 3955–3972 (2023).

    [48] X. Jiang, B.R. Stockwell, M. Conrad, Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    [49] M.J. Ko, W. Yoo, S. Min, Y. Zhang, J. Joo et al., Photonic control of image-guided ferroptosis cancer nanomedicine. Coord. Chem. Rev. 500, 215532 (2024).

    [50] M. Jung, C. Mertens, E. Tomat, B. Brüne, Iron as a central player and promising target in cancer progression. Int. J. Mol. Sci. 20, 273 (2019).

    [51] S.V. Torti, F.M. Torti, Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013).

    [52] T.A. Rouault, N. Maio, Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J. Biol. Chem. 292, 12744–12753 (2017).

    [53] A. Leftin, N. Ben-Chetrit, F. Klemm, J.A. Joyce, J.A. Koutcher, Iron imaging reveals tumor and metastasis macrophage hemosiderin deposits in breast cancer. PLoS ONE 12, e0184765 (2017).

    [54] S. Dev, J.L. Babitt, Overview of iron metabolism in health and disease. Hemodial. Int. 21, S6–S20 (2017).

    [55] A.R. Bogdan, M. Miyazawa, K. Hashimoto, Y. Tsuji, Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem. Sci. 41, 274–286 (2016).

    [56] N. Wilkinson, K. Pantopoulos, The IRP/IRE system in vivo: insights from mouse models. Front. Pharmacol. 5, 176 (2014).

    [57] C. Raggi, E. Gammella, M. Correnti, P. Buratti, E. Forti et al., Dysregulation of iron metabolism in cholangiocarcinoma stem-like cells. Sci. Rep. 7, 17667 (2017).

    [58] Z. Rychtarcikova, S. Lettlova, V. Tomkova, V. Korenkova, L. Langerova et al., Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 8, 6376–6398 (2017).

    [59] T.B. Toh, J.J. Lim, E.K. Chow, Epigenetics in cancer stem cells. Mol. Cancer 16, 29 (2017).

    [60] E.N. Wainwright, P. Scaffidi, Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity. Trends Cancer 3, 372–386 (2017).

    [61] J.P.F. Angeli, M. Schneider, B. Proneth, Y.Y. Tyurina, V.A. Tyurin et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    [62] Y. Mou, J. Wang, J. Wu, D. He, C. Zhang et al., Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. 12, 34 (2019).

    [63] B. Lu, X.B. Chen, M.D. Ying, Q.J. He, J. Cao et al., The role of ferroptosis in cancer development and treatment response. Front. Pharmacol. 8, 992 (2018).

    [64] Y. Chen, Z. Yao, P. Liu, Q. Hu, Y. Huang et al., A self-assembly nano-prodrug for triple-negative breast cancer combined treatment by ferroptosis therapy and chemotherapy. Acta Biomater. 159, 275–288 (2023).

    [65] K. Kazan, S. Kalaipandian, Ferroptosis: yet another way to die. Trends Plant Sci. 24, 479–481 (2019).

    [66] J.P. Friedmann Angeli, D.V. Krysko, M. Conrad, Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    [67] M. Conlon, S.J. Dixon, Ferroptosis-like death in plant cells. Mol. Cell. Oncol. 4, e1302906 (2017).

    [68] X. Lang, M.D. Green, W. Wang, J. Yu, J.E. Choi et al., Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    [69] F. Kuang, J. Liu, D. Tang, R. Kang, Oxidative damage and antioxidant defense in ferroptosis. Front. Cell Dev. Biol. 8, 586578 (2020).

    [70] F. Ursini, M. Maiorino, C. Gregolin, The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta BBA Gen. Subj. 839, 62–70 (1985).

    [71] W.S. Yang, K.J. Kim, M.M. Gaschler, M. Patel, M.S. Shchepinov et al., Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. U.S.A. 113, E4966–E4975 (2016).

    [72] X. Sui, R. Zhang, S. Liu, T. Duan, L. Zhai et al., RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front. Pharmacol. 9, 1371 (2018).

    [73] J. Yang, J. Mo, J. Dai, C. Ye, W. Cen et al., Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 12, 1079 (2021).

    [74] B. Han, Y. Liu, Q. Zhang, L. Liang, Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis. J. Proteomics 274, 104777 (2023).

    [75] S. Cai, Z. Ding, X. Liu, J. Zeng, Trabectedin induces ferroptosis via regulation of HIF-1α/IRP1/TFR1 and Keap1/Nrf2/GPX4 axis in non-small cell lung cancer cells. Chem. Biol. Interact. 369, 110262 (2023).

    [76] W. Zhang, B. Jiang, Y. Liu, L. Xu, M. Wan, Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic. Biol. Med. 180, 75–84 (2022).

    [77] R. Yu, Y. Zhou, S. Shi, X. Wang, S. Huang et al., Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis. Phytomedicine 102, 154182 (2022).

    [78] M. Hashemzaei, A.K. Barani, M. Iranshahi, R. Rezaee, K. Tsarouhas et al., Effects of resveratrol on carbon monoxide-induced cardiotoxicity in rats. Environ. Toxicol. Pharmacol. 46, 110–115 (2016).

    [79] T.M. Bahr, R.D. Christensen, D.M. Ward, F. Meng, L.K. Jackson et al., Ferritin in serum and urine: a pilot study. Blood Cells Mol. Dis. 76, 59–62 (2019).

    [80] Y. Qin, Y. Qiao, D. Wang, C. Tang, G. Yan, Ferritinophagy and ferroptosis in cardiovascular disease: mechanisms and potential applications. Biomed. Pharmacother. 141, 111872 (2021).

    [81] K. Shimada, R. Skouta, A. Kaplan, W.S. Yang, M. Hayano et al., Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    [82] Z. Wu, Y. Geng, X. Lu, Y. Shi, G. Wu et al., Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl. Acad. Sci. U.S.A. 116, 2996–3005 (2019).

    [83] M. Conrad, D.A. Pratt, The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    [84] B.R. Stockwell, Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    [85] Y. Zou, H. Li, E.T. Graham, A.A. Deik, J.K. Eaton et al., Cytochrome P450 oxidoreductase contributes tophospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 16, 302–309 (2020).

    [86] V.E. Kagan, G. Mao, F. Qu, J.P.F. Angeli, S. Doll et al., Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    [87] R. Shintoku, Y. Takigawa, K. Yamada, C. Kubota, Y. Yoshimoto et al., Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108, 2187–2194 (2017).

    [88] L. Tirinato, C. Liberale, S. Di Franco, P. Candeloro, A. Benfante et al., Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33, 35–44 (2015).

    [89] M. Visweswaran, F. Arfuso, S. Warrier, A. Dharmarajan, Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells. Stem Cells 38, 6–14 (2020).

    [90] B.J. Hershey, R. Vazzana, D.L. Joppi, K.M. Havas, Lipid droplets define a sub-population of breast cancer stem cells. J. Clin. Med. 9, 87 (2019).

    [91] S.J. Dixon, G.E. Winter, L.S. Musavi, E.D. Lee, B. Snijder et al., Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    [92] L. Zhao, Y. Peng, S. He, R. Li, Z. Wang et al., Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer 24, 642–654 (2021).

    [93] J. Li, S. Huang, Q. Wang, D. Zhou, B. Zhao et al., Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction. Phytomedicine 109, 154601 (2023).

    [94] F. Yang, Y. Xiao, J.-H. Ding, X. Jin, D. Ma et al., Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 35, 84-100.e8 (2023).

    [95] G.-Q. Chen, F.A. Benthani, J. Wu, D. Liang, Z.-X. Bian et al., Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27, 242–254 (2020).

    [96] S. Huang, H. Le, G. Hong, G. Chen, F. Zhang et al., An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomater. 148, 244–257 (2022).

    [97] F. Zhang, F. Li, G.-H. Lu, W. Nie, L. Zhang et al., Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 13, 5662–5673 (2019).

    [98] Z. Shen, T. Liu, Y. Li, J. Lau, Z. Yang et al., Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano 12, 11355–11365 (2018).

    [99] Y. Zou, W.S. Henry, E.L. Ricq, E.T. Graham, V.V. Phadnis et al., Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).

    [100] Y.Y. Tyurina, A.A. Kapralov, V.A. Tyurin, G. Shurin, A.A. Amoscato et al., Redox phospholipidomics discovers pro-ferroptotic death signals in A375 melanoma cells in vitro and in vivo. Redox Biol. 61, 102650 (2023).

    [101] K.A. Jasim, A.J. Gesquiere, Ultrastable and biofunctionalizable conjugated polymer nanoparticles with encapsulated iron for ferroptosis assisted chemodynamic therapy. Mol. Pharm. 16, 4852–4866 (2019).

    [102] S. Koo, O.K. Park, J. Kim, S.I. Han, T.Y. Yoo et al., Enhanced chemodynamic therapy by Cu-Fe peroxide nanoparticles: tumor microenvironment-mediated synergistic Fenton reaction. ACS Nano 16, 2535–2545 (2022).

    [103] N. Wang, Q. Zeng, R. Zhang, D. Xing, T. Zhang, Eradication of solid tumors by chemodynamic theranostics with H2O2-catalyzed hydroxyl radical burst. Theranostics 11, 2334–2348 (2021).

    [104] M. Zahiri, M. Falsafi, K. Lamei, K. Abnous, S.M. Taghdisi et al., Targeted biomimetic hollow mesoporous organosilica nanoparticles for delivery of doxorubicin to colon adenocarcinoma: in vitro and in vivo evaluation. Microporous Mesoporous Mater. 335, 111841 (2022).

    [105] L. Huang, J. Zhu, W. Xiong, J. Feng, J. Yang et al., Tumor-generated reactive oxygen species storm for high-performance ferroptosis therapy. ACS Nano 17, 11492–11506 (2023).

    [106] S. Bai, Y. Lan, S. Fu, H. Cheng, Z. Lu et al., Connecting calcium-based nanomaterials and cancer: from diagnosis to therapy. Nano-Micro Lett. 14, 145 (2022).

    [107] Z. Chen, J.-J. Yin, Y.-T. Zhou, Y. Zhang, L. Song et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6, 4001–4012 (2012).

    [108] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

    [109] L.S. Li, E.A. Bey, Y. Dong, J. Meng, B. Patra et al., Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy. Clin. Cancer Res. 17, 275–285 (2011).

    [110] H. Yeo, C.A. Lyssiotis, Y. Zhang, H. Ying, J.M. Asara et al., FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J. 32, 2589–2602 (2013).

    [111] Q. Chen, J. Zhou, Z. Chen, Q. Luo, J. Xu et al., Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces 11, 30551–30565 (2019).

    [112] W. Li, S. Yin, Y. Shen, H. Li, L. Yuan et al., Molecular engineering of pH-responsive NIR oxazine assemblies for evoking tumor ferroptosis via triggering lysosomal dysfunction. J. Am. Chem. Soc. 145, 3736–3747 (2023).

    [113] Y. Xie, S. Zhu, X. Song, X. Sun, Y. Fan et al., The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    [114] H. Chen, F. Peng, J. Xu, G. Wang, Y. Zhao, Increased expression of GPX4 promotes the tumorigenesis of thyroid cancer by inhibiting ferroptosis and predicts poor clinical outcomes. Aging 15, 230–245 (2023).

    [115] X. Wei, X. Yi, X.-H. Zhu, D.-S. Jiang, Posttranslational modifications in ferroptosis. Oxid. Med. Cell. Longev. 2020, 8832043 (2020).

    [116] C. Gai, C. Liu, X. Wu, M. Yu, J. Zheng et al., MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 11, 751 (2020).

    [117] A. Brown, S. Kumar, P.B. Tchounwou, Cisplatin-based chemotherapy of human cancers. J. Cancer Sci. Ther. 11, 97 (2019).

    [118] G. Bronte, D. Andreis, S. Bravaccini, R. Maltoni, L. Cecconetto et al., Sorafenib for the treatment of breast cancer. Expert Opin. Pharmacother. 18, 621–630 (2017).

    [119] C. Bae, H. Kim, Y.M. Kook, C. Lee, C. Kim et al., Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater. Today Bio 17, 100457 (2022).

    [120] M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017).

    [121] L. Wang, M. Huo, Y. Chen, J. Shi, Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials 163, 1–13 (2018).

    [122] X. Qian, J. Zhang, Z. Gu, Y. Chen, Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 211, 1–13 (2019).

    [123] Z. Zhou, J. Song, R. Tian, Z. Yang, G. Yu et al., Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew. Chem. Int. Ed. 56, 6492–6496 (2017).

    [124] A. Sheikh, S. Md, P. Kesharwani, Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed. Pharmacother. 146, 112530 (2022).

    [125] M. Fatima, A. Sheikh, N. Hasan, A. Sahebkar, Y. Riadi et al., Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur. Polym. J. 170, 111156 (2022).

    [126] Y. Du, J. Zhou, F. He, P. Zang, H. Gong et al., A bright future: advanced nanotechnology-assisted microwave therapy. Nano Today 52, 101963 (2023).

    [127] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    [128] P. Venkatesan, N. Thirumalaivasan, H.-P. Yu, P.-S. Lai, S.-P. Wu, Redox stimuli delivery vehicle based on transferrin-capped MSNPs for targeted drug delivery in cancer therapy. ACS Appl. Bio Mater. 2, 1623–1633 (2019).

    [129] K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 30, e1707634 (2018).

    [130] L. Jiao, H.-L. Jiang, Metal-organic-framework-based single-atom catalysts for energy applications. Chem 5, 786–804 (2019).

    [131] M. Falsafi, M. Zahiri, A.S. Saljooghi, K. Abnous, S.M. Taghdisi et al., Aptamer targeted red blood cell membrane-coated porphyrinic copper-based MOF for guided photochemotherapy against metastatic breast cancer. Micropor Mesopor Mater. 325, 111337 (2021).

    [132] L.F. Ye, K.R. Chaudhary, F. Zandkarimi, A.D. Harken, C.J. Kinslow et al., Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol. 15, 469–484 (2020).

    [133] G. Lei, C. Mao, Y. Yan, L. Zhuang, B. Gan, Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 12, 836–857 (2021).

    [134] G. Lei, Y. Zhang, T. Hong, X. Zhang, X. Liu et al., Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity. Oncogene 40, 3533–3547 (2021).

    [135] G. Lei, Y. Zhang, P. Koppula, X. Liu, J. Zhang et al., The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020).

    [136] Y. Wu, C. Yu, M. Luo, C. Cen, J. Qiu et al., Ferroptosis in cancer treatment: another way to Rome. Front. Oncol. 10, 571127 (2020).

    [137] Y. Liang, C. Peng, N. Su, Q. Li, S. Chen et al., Tumor microenvironments self-activated cascade catalytic nanoscale metal organic frameworks as ferroptosis inducer for radiosensitization. Chem. Eng. J. 437, 135309 (2022).

    [138] B. Hassannia, P. Vandenabeele, T. Vanden Berghe, Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    [139] T. Liu, W. Liu, M. Zhang, W. Yu, F. Gao et al., Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano 12, 12181–12192 (2018).

    [140] M. Mu, Y. Wang, S. Zhao, X. Li, R. Fan et al., Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent. ACS Appl. Bio Mater. 3, 4128–4138 (2020).

    [141] W. Xu, T. Wang, J. Qian, J. Wang, G. Hou et al., Fe(II)-hydrazide coordinated all-active metal organic framework for photothermally enhanced tumor penetration and ferroptosis-apoptosis synergistic therapy. Chem. Eng. J. 437, 135311 (2022).

    [142] C. Liang, X. Zhang, M. Yang, X. Dong, Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater. 31, e1904197 (2019).

    [143] H. He, L. Du, H. Guo, Y. An, L. Lu et al., Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy. Small 16, e2001251 (2020).

    [144] Q. Guan, R. Guo, S. Huang, F. Zhang, J. Liu et al., Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy. J. Control. Release 320, 392–403 (2020).

    [145] X. Hu, R. Li, W. Wu, K. Fang, Z. Zhu et al., A Fe(III)-porphyrin-oxaliplatin(IV) nanoplatform for enhanced ferroptosis and combined therapy. J. Control. Release 348, 660–671 (2022).

    [146] H. Peng, X. Zhang, P. Yang, J. Zhao, W. Zhang et al., Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance. Bioact. Mater. 19, 1–11 (2021).

    [147] A. Jain, P. Kesharwani, N.K. Garg, A. Jain, S.A. Jain et al., Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerf 134, 47–58 (2015).

    [148] N. Soni, N. Soni, H. Pandey, R. Maheshwari, P. Kesharwani et al., Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J. Colloid Interface Sci. 481, 107–116 (2016).

    [149] A. Jain, N.K. Garg, A. Jain, P. Kesharwani, A.K. Jain et al., A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev. Ind. Pharm. 42, 897–905 (2016).

    [150] A. Jain, G. Sharma, V. Kushwah, N.K. Garg, P. Kesharwani et al., Methotrexate and beta-carotene loaded-lipid polymer hybrid nanoparticles: a preclinical study for breast cancer. Nanomedicine 12, 1851–1872 (2017).

    [151] S. Md, S. Haque, T. Madheswaran, F. Zeeshan, V.S. Meka et al., Lipid based nanocarriers system for topical delivery of photosensitizers. Drug Discov. Today 22, 1274–1283 (2017).

    [152] N. Hasan, M. Imran, P. Kesharwani, K. Khanna, R. Karwasra et al., Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int. J. Pharm. 599, 120428 (2021).

    [153] G.S. Bhagwat, R.B. Athawale, R.P. Gude, S. Md, N.A. Alhakamy et al., Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front. Pharmacol. 11, 614290 (2020).

    [154] A. Aziz, U. Rehman, A. Sheikh, M.A.S. Abourehab, P. Kesharwani, Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy. J. Biomater. Sci. Polym. Ed. 34, 398–418 (2023).

    [155] F. Mohammadpour, H. Kamali, L. Gholami, A.P. McCloskey, P. Kesharwani et al., Solid lipid nanoparticles: a promising tool for insulin delivery. Expert Opin. Drug Deliv. 19, 1577–1595 (2022).

    [156] D.C. Drummond, C.O. Noble, Z. Guo, K. Hong, J.W. Park et al., Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 66, 3271–3277 (2006).

    [157] C. Zylberberg, K. Gaskill, S. Pasley, S. Matosevic, Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 24, 441–452 (2017).

    [158] X. Chen, Y. Zhang, C. Tang, C. Tian, Q. Sun et al., Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis. Int. J. Pharm. 529, 102–115 (2017).

    [159] F. Persano, G. Gigli, S. Leporatti, Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Ex. 2, 012006 (2021).

    [160] Z. Li, C. Wang, C. Dai, R. Hu, L. Ding et al., Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy. Biomaterials 287, 121668 (2022).

    [161] P. Ghasemiyeh, S. Mohammadi-Samani, Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci. 13, 288–303 (2018).

    [162] H. Yuan, L.-L. Wang, Y.-Z. Du, J. You, F.-Q. Hu et al., Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Coll. Surf. B Biointerf. 60, 174–179 (2007).

    [163] E. Esposito, M. Drechsler, R. Cortesi, C. Nastruzzi, Encapsulation of cannabinoid drugs in nanostructured lipid carriers. Eur. J. Pharm. Biopharm. 102, 87–91 (2016).

    [164] J. Zhang, J. Yang, T. Zuo, S. Ma, N. Xokrat et al., Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials 266, 120429 (2021).

    [165] L. Zeng, B.H.J. Gowda, M.G. Ahmed, M.A.S. Abourehab, Z.S. Chen et al., Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer 22, 10 (2023).

    [166] Z. Liu, N. Parveen, U. Rehman, A. Aziz, A. Sheikh et al., Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Mol. Cancer 22, 8 (2023).

    [167] U. Rehman, M.A.S. Abourehab, A. Alexander, P. Kesharwani, Polymeric micelles assisted combinatorial therapy: is it new hope for pancreatic cancer? Eur. Polym. J. 184, 111784 (2023).

    [168] N. Parveen, M.A.S. Abourehab, R. Shukla, P.V. Thanikachalam, G.K. Jain et al., Immunoliposomes as an emerging nanocarrier for breast cancer therapy. Eur. Polym. J. 184, 111781 (2023).

    [169] A.K. Jain, S. Jain, M.A.S. Abourehab, P. Mehta, P. Kesharwani, An insight on topically applied formulations for management of various skin disorders. J. Biomater. Sci. Polym. Ed. 33, 2406–2432 (2022).

    [170] Y. Wang, T. Liu, X. Li, H. Sheng, X. Ma et al., Ferroptosis-inducing nanomedicine for cancer therapy. Front. Pharmacol. 12, 735965 (2021).

    [171] J. Gao, T. Luo, J. Wang, Gene interfered-ferroptosis therapy for cancers. Nat. Commun. 12, 5311 (2021).

    [172] M. Cheng, B. Zhang, W. Cui, M.L. Gross, Laser-initiated radical trifluoromethylation of peptides and proteins: application to mass-spectrometry-based protein footprinting. Angew. Chem. Int. Ed. 56, 14007–14010 (2017).

    [173] H. Chen, J. Wen, Iron oxide nanoparticles loaded with paclitaxel inhibits glioblastoma by enhancing autophagy-dependent ferroptosis pathway. Eur. J. Pharmacol. 921, 174860 (2022).

    [174] A. Ruiz-de-Angulo, M. Bilbao-Asensio, J. Cronin, S.J. Evans, M.J.D. Clift et al., Chemically programmed vaccines: iron catalysis in nanoparticles enhances combination immunotherapy and immunotherapy-promoted tumor ferroptosis. iScience 23, 101499 (2020).

    [175] X. Zhu, Q. Chen, L. Xie, W. Chen, Y. Jiang et al., Iron ion and sulfasalazine-loaded polydopamine nanoparticles for Fenton reaction and glutathione peroxidase 4 inactivation for enhanced cancer ferrotherapy. Acta Biomater. 145, 210–221 (2022).

    [176] J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14, 57 (2022).

    [177] J. Li, W. Lu, Y. Yang, R. Xiang, Y. Ling et al., Hybrid nanomaterials for cancer immunotherapy. Adv. Sci. 10, e2204932 (2023).

    [178] R. Thangam, K.D. Patel, H. Kang, R. Paulmurugan, Advances in engineered polymer nanoparticle tracking platforms towards cancer immunotherapy-current status and future perspectives. Vaccines 9, 935 (2021).

    [179] X. Cai, L. Ruan, D. Wang, J. Zhang, J. Tang et al., Boosting chemotherapy of bladder cancer cells by ferroptosis using intelligent magnetic targeting nanoparticles. Colloids Surf. B Biointerf 234, 113664 (2024).

    [180] R. Thangam, M.S. Kim, G. Bae, Y. Kim, N. Kang et al., Remote switching of elastic movement of decorated ligand nanostructures controls the adhesion-regulated polarization of host macrophages. Adv. Funct. Mater. 31, 2008698 (2021).

    [181] S. Min, Y.S. Jeon, H. Choi, C. Khatua, N. Li et al., Large and externally positioned ligand-coated nanopatches facilitate the adhesion-dependent regenerative polarization of host macrophages. Nano Lett. 20, 7272–7280 (2020).

    [182] W. Yin, J. Chang, J. Sun, Y. Zhao, S. Chen et al., Arginine nanoparticles mediated closed-loop ferroptosis enhancement for T cell activity boosting in cancer immunotherapy. Appl. Mater. Today 36, 102047 (2024).

    [183] J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    [184] Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: hidden talents. Adv. Mater. 26, 4200–4217 (2014).

    [185] Q. Ma, Y. Liu, H. Zhu, L. Zhang, X. Liao, Nanozymes in tumor theranostics. Front Oncol. 11, 666017 (2021).

    [186] S. Dong, Y. Dong, B. Liu, J. Liu, S. Liu et al., Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy. Adv. Mater. 34, e2107054 (2022).

    [187] R.K. Sindhu, A. Najda, P. Kaur, M. Shah, H. Singh et al., Potentiality of nanoenzymes for cancer treatment and other diseases: current status and future challenges. Materials 14, 5965 (2021).

    [188] X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nanomicro Lett. 14, 95 (2022).

    [189] P. Wang, T. Wang, J. Hong, X. Yan, M. Liang, Nanozymes: a new disease imaging strategy. Front. Bioeng. Biotechnol. 8, 15 (2020).

    [190] M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).

    [191] X. Ren, D. Chen, Y. Wang, H. Li, Y. Zhang et al., Nanozymes-recent development and biomedical applications. J. Nanobiotechnol. 20, 92 (2022).

    [192] Y. Zhang, Y. Jin, H. Cui, X. Yan, K. Fan, Nanozyme-based catalytic theranostics. RSC Adv. 10, 10–20 (2020).

    [193] H. Ge, J. Du, J. Zheng, N. Xu, Q. Yao et al., Effective treatment of cisplatin-resistant ovarian tumors with a MoS2-based sonosensitizer and nanoenzyme capable of reversing the resistant-microenvironment and enhancing ferroptosis and apoptosis. Chem. Eng. J. 446, 137040 (2022).

    [194] Y. Liu, W. Zhen, Y. Wang, J. Liu, L. Jin et al., One-dimensional Fe2 P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. Int. Ed. 58, 2407–2412 (2019).

    [195] W.-P. Li, C.-H. Su, Y.-C. Chang, Y.-J. Lin, C.-S. Yeh, Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 10, 2017–2027 (2016).

    [196] L. Zhang, S.-S. Wan, C.-X. Li, L. Xu, H. Cheng et al., An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 18, 7609–7618 (2018).

    [197] L. Xing, X.-Y. Liu, T.-J. Zhou, X. Wan, Y. Wang et al., Photothermal nanozyme-ignited Fenton reaction-independent ferroptosis for breast cancer therapy. J. Control. Release 339, 14–26 (2021).

    [198] G. Zhang, N. Li, Y. Qi, Q. Zhao, J. Zhan et al., Synergistic ferroptosis-gemcitabine chemotherapy of the gemcitabine loaded carbonaceous nanozymes to enhance the treatment and magnetic resonance imaging monitoring of pancreatic cancer. Acta Biomater. 142, 284–297 (2022).

    [199] M.J. Ko, S. Min, H. Hong, W. Yoo, J. Joo et al., Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact. Mater. 32, 66–97 (2023).

    [200] H. Gavilán, S.K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani et al., Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50, 11614–11667 (2021).

    [201] S. Dutta, S. Noh, R.S. Gual, X. Chen, S. Pané et al., Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano-Micro Lett. 16, 41 (2023).

    [202] L. Yang, K.D. Patel, C. Rathnam, R. Thangam, Y. Hou et al., Harnessing the therapeutic potential of extracellular vesicles for biomedical applications using multifunctional magnetic nanomaterials. Small 18, e2104783 (2022).

    [203] X. Zhao, K. Guo, K. Zhang, S. Duan, M. Chen et al., Orchestrated yolk-shell nanohybrids regulate macrophage polarization and dendritic cell maturation for oncotherapy with augmented antitumor immunity. Adv. Mater. 34, e2108263 (2022).

    [204] J. Zhang, K. Zhou, J. Lin, X. Yao, D. Ju et al., Ferroptosis-enhanced chemotherapy for triple-negative breast cancer with magnetic composite nanoparticles. Biomaterials 303, 122395 (2023).

    [205] Z.-J. Zhang, Z.-T. Liu, Y.-P. Huang, W. Nguyen, Y.-X. Wang et al., Magnetic resonance and fluorescence imaging superparamagnetic nanoparticles induce apoptosis and ferroptosis through photodynamic therapy to treat colorectal cancer. Mater. Today Phys. 36, 101150 (2023).

    [206] Z.-H. Li, Y. Chen, X. Zeng, X.-Z. Zhang, Ultra-small FePt/siRNA loaded mesoporous silica nanoplatform to deplete cysteine for enhanced ferroptosis in breast tumor therapy. Nano Today 38, 101150 (2021).

    [207] J. Yang, L. Ding, L. Yu, Y. Wang, M. Ge et al., Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Sci. Bull. 66, 464–477 (2021).

    [208] S. Liang, X. Deng, P.-A. Ma, Z. Cheng, J. Lin, Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater. 32, e2003214 (2020).

    [209] S. Liu, K. Dou, B. Liu, M. Pang, P.-A. Ma et al., Construction of multiform hollow-structured covalent organic frameworks via a facile and universal strategy for enhanced sonodynamic cancer therapy. Angew. Chem. Int. Ed. 62, e202301831 (2023).

    [210] Y. Dong, S. Dong, B. Liu, C. Yu, J. Liu et al., 2D piezoelectric Bi2MoO6 nanoribbons for GSH-enhanced sonodynamic therapy. Adv. Mater. 33, 2106838 (2021).

    [211] A.P. McHale, J.F. Callan, N. Nomikou, C. Fowley, B. Callan, Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol 880, 429–450 (2016).

    [212] D. Costley, C.M. Ewan, C. Fowley, A.P. McHale, J. Atchison et al., Treating cancer with sonodynamic therapy: a review. Int. J. Hyperthermia 31, 107–117 (2015).

    [213] S. Dong, Y. Dong, Z. Zhao, J. Liu, S. Liu et al., “electron transport chain interference” strategy of amplified mild-photothermal therapy and defect-engineered multi-enzymatic activities for synergistic tumor-personalized suppression. J. Am. Chem. Soc. 145, 9488–9507 (2023).

    [214] J. Yu, F. Zhu, Y. Yang, P. Zhang, Y. Zheng et al., Ultrasmall iron-doped zinc oxide nanoparticles for ferroptosis assisted sono-chemodynamic cancer therapy. Colloids Surf. B Biointerfaces 232, 113606 (2023).

    [215] L. Zhou, C. Dong, L. Ding, W. Feng, L. Yu et al., Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy. Nano Today 39, 101212 (2021).

    [216] Y. Cao, H.-Y. Huang, L.-Q. Chen, H.-H. Du, J.-H. Cui et al., Enhanced lysosomal escape of pH-responsive polyethylenimine-betaine functionalized carbon nanotube for the codelivery of survivin small interfering RNA and doxorubicin. ACS Appl. Mater. Interfaces 11, 9763–9776 (2019).

    [217] P. Norouzi, H. Motasadizadeh, F. Atyabi, R. Dinarvand, M. Gholami et al., Combination therapy of breast cancer by codelivery of doxorubicin and survivin siRNA using polyethylenimine modified silk fibroin nanoparticles. ACS Biomater. Sci. Eng. 7, 1074–1087 (2021).

    [218] J. Chen, Y. Wang, L. Han, R. Wang, C. Gong et al., A ferroptosis-inducing biomimetic nanocomposite for the treatment of drug-resistant prostate cancer. Mater. Today Bio 17, 100484 (2022).

    [219] Z. Li, J. Bu, X. Zhu, H. Zhou, K. Ren et al., Anti-tumor immunity and ferroptosis of hepatocellular carcinoma are enhanced by combined therapy of sorafenib and delivering modified GO-based PD-L1 siRNAs. Biomater. Adv. 136, 212761 (2022).

    [220] F. Wei, S. Kuang, T.W. Rees, X. Liao, J. Liu et al., Ruthenium(II) complexes coordinated to graphitic carbon nitride: oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia. Biomaterials 276, 121064 (2021).

    [221] A.E. O’Connor, W.M. Gallagher, A.T. Byrne, Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol. 85, 1053–1074 (2009).

    [222] A. Sneider, R. Jadia, B. Piel, D. VanDyke, C. Tsiros et al., Engineering remotely triggered liposomes to target triple negative breast cancer. Oncomedicine 2, 1–13 (2017).

    [223] M. Li, J. Sun, W. Zhang, Y. Zhao, S. Zhang et al., Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym. 251, 117103 (2021).

    [224] W. Tang, Z. Zhen, M. Wang, H. Wang, Y.-J. Chuang et al., Red blood cell-facilitated photodynamic therapy for cancer treatment. Adv. Funct. Mater. 26, 1757–1768 (2016).

    [225] F. Wei, J. Karges, J. Shen, L. Xie, K. Xiong et al., A mitochondria-localized oxygen self-sufficient two-photon nano-photosensitizer for ferroptosis-boosted photodynamic therapy under hypoxia. Nano Today 44, 101509 (2022).

    [226] Z. Dong, L. Feng, Y. Hao, Q. Li, M. Chen et al., Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem 6, 1391–1407 (2020).

    [227] X. Jing, Y. Xu, D. Liu, Y. Wu, N. Zhou et al., Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. Nanoscale 11, 15508–15518 (2019).

    [228] Z. Dong, L. Feng, Y. Chao, Y. Hao, M. Chen et al., Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 19, 805–815 (2019).

    [229] S. Luo, D. Ma, R. Wei, W. Yao, X. Pang et al., A tumor microenvironment responsive nanoplatform with oxidative stress amplification for effective MRI-based visual tumor ferroptosis. Acta Biomater. 138, 518–527 (2022).

    [230] L. Zhou, F. Wei, J. Xiang, H. Li, C. Li et al., Enhancing the ROS generation ability of a rhodamine-decorated iridium(iii) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy. Chem. Sci. 11, 12212–12220 (2020).

    [231] Y. Yu, H. Jia, Y. Liu, L. Zhang, G. Feng et al., Recent progress in type I aggregation-induced emission photosensitizers for photodynamic therapy. Molecules 28, 332 (2022).

    [232] X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    [233] S. Xu, Y. Yuan, X. Cai, C.-J. Zhang, F. Hu et al., Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chem. Sci. 6, 5824–5830 (2015).

    [234] J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010).

    [235] Z. Zhao, H. Zhang, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission: new vistas at the aggregate level. Angew. Chem. Int. Ed. 59, 9888–9907 (2020).

    [236] R. Jiang, J. Dai, X. Dong, Q. Wang, Z. Meng et al., Improving image-guided surgical and immunological tumor treatment efficacy by photothermal and photodynamic therapies based on a multifunctional NIR AIEgen. Adv. Mater. 33, e2101158 (2021).

    [237] B. Wang, L. Wang, H. Wu, X. Liu, J. Zhu et al., The commercial antibiotics with inherent AIE feature: in situ visualization of antibiotic metabolism and specifically differentiation of bacterial species and broad-spectrum therapy. Bioact. Mater. 23, 223–233 (2022).

    [238] S. Liu, Y. Li, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang, Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 12, 3427–3436 (2020).

    [239] L. Liu, H. He, Z. Luo, H. Zhou, R. Liang et al., In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Adv. Funct. Mater. 30, 1910176 (2020).

    [240] X. Yu, Y.-C. Zhang, X. Yang, Z. Huang, T. Zhang et al., Bonsai-inspired AIE nanohybrid photosensitizer based on vermiculite nanosheets for ferroptosis-assisted oxygen self-sufficient photodynamic cancer therapy. Nano Today 44, 101477 (2022).

    [241] W. Wang, J. Cai, J. Wen, X. Li, Y. Yu et al., Boosting ferroptosis via abplatin(iv) for treatment of platinum-resistant recurrent ovarian cancer. Nano Today 44, 101459 (2022).

    [242] Y. Han, Z. Dong, C. Wang, Q. Li, Y. Hao et al., Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. J. Control. Release 348, 346–356 (2022).

    [243] Y. Liu, J. Wu, Y. Jin, W. Zhen, Y. Wang et al., Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Adv. Funct. Mater. 29, 1904678 (2019).

    [244] A. Bagheri, H. Arandiyan, C. Boyer, M. Lim, Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Adv. Sci. 3, 1500437 (2016).

    [245] W. Zeng, X. Wu, T. Chen, S. Sun, Z. Shi et al., Renal-clearable ultrasmall polypyrrole nanoparticles with size-regulated property for second near-infrared light-mediated photothermal therapy. Adv. Funct. Mater. 31, 2008362 (2021).

    [246] M. Yu, J. Yu, Y. Yi, T. Chen, L. Yu et al., Oxidative stress-amplified nanomedicine for intensified ferroptosis-apoptosis combined tumor therapy. J. Control. Release 347, 104–114 (2022).

    [247] X. Zhang, S. Yang, Q. Wang, W. Ye, S. Liu et al., Tailored theranostic nanoparticles cause efficient ferroptosis in head and neck squamous cell carcinoma through a reactive oxygen species “butterfly effect.” Chem. Eng. J. 423, 130083 (2021).

    [248] C. Chen, W. Du, W. Jing, P. Sun, C. Shi et al., Leveraging tumor cell ferroptosis for colorectal cancer treatment via nanoelicitor-activated tumoricidal immunity. Chem. Eng. J. 430, 132983 (2022).

    [249] Y. Dai, Z. Yang, S. Cheng, Z. Wang, R. Zhang et al., Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Adv. Mater. 30, 1704877 (2018).

    [250] P. Li, M. Gao, Z. Hu, T. Xu, J. Chen et al., Synergistic ferroptosis and macrophage re-polarization using engineering exosome-mimic M1 nanovesicles for cancer metastasis suppression. Chem. Eng. J. 409, 128217 (2021).

    [251] J. Yang, S. Ma, R. Xu, Y. Wei, J. Zhang et al., Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 334, 21–33 (2021).

    [252] A. Ghoochani, E.-C. Hsu, M. Aslan, M.A. Rice, H.M. Nguyen et al., Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res. 81, 1583–1594 (2021).

    [253] D. Tang, X. Chen, R. Kang, G. Kroemer, Ferroptosis: molecular mechanisms and health implications. Cell Res. 31, 107–125 (2021).

    [254] E.H. Kim, D. Shin, J. Lee, A.R. Jung, J.L. Roh, CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 432, 180–190 (2018).

    [255] D. Li, Y. Li, The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther. 5, 108 (2020).

    [256] X. Zhang, K. Yu, L. Ma, Z. Qian, X. Tian et al., Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics 11, 5650–5674 (2021).

    [257] S. Park, J. Oh, M. Kim, E.-J. Jin, Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis. Anim. Cells Syst. 22, 334–340 (2018).

    [258] Y. Sun, Y. He, J. Tong, D. Liu, H. Zhang et al., All-trans retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating ferroptosis. Genes Dis. 9, 1742–1756 (2022).

    [259] L. Sun, H. Wang, D. Xu, S. Yu, L. Zhang et al., Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered 13, 48–60 (2022).

    [260] N. Eling, L. Reuter, J. Hazin, A. Hamacher-Brady, N.R. Brady, Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2, 517–532 (2015).

    [261] K.S. Kim, B. Choi, H. Choi, M.J. Ko, D.H. Kim et al., Enhanced natural killer cell anti-tumor activity with nanoparticles mediated ferroptosis and potential therapeutic application in prostate cancer. J. Nanobiotechnol. 20, 428 (2022).

    [262] T. Kasukabe, Y. Honma, J. Okabe-Kado, Y. Higuchi, N. Kato et al., Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. Oncol. Rep. 36, 968–976 (2016).

    [263] D. Wang, W. Fang, C. Huang, Z. Chen, T. Nie et al., MR imaging guided iron-based nanoenzyme for synergistic Ferroptosis-Starvation therapy in triple negative breast cancer. Smart Mater. Med. 3, 159–167 (2022).

    Afsana Sheikh, Prashant Kesharwani, Waleed H. Almalki, Salem Salman Almujri, Linxin Dai, Zhe-Sheng Chen, Amirhossein Sahebkar, Fei Gao. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy[J]. Nano-Micro Letters, 2024, 16(1): 188
    Download Citation