• Photonics Research
  • Vol. 12, Issue 12, 2772 (2024)
Erse Jia1,2, Chen Xie1,2,*, Yue Yang1,2, Xinyu Ma1,2..., Shixian Sun1,2, Yanfeng Li1,2, Xueqian Zhang2,3 and Minglie Hu1,2|Show fewer author(s)
Author Affiliations
  • 1Ultrafast Laser Laboratory, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-electronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
  • 3Center for Terahertz Waves, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.531243 Cite this Article Set citation alerts
    Erse Jia, Chen Xie, Yue Yang, Xinyu Ma, Shixian Sun, Yanfeng Li, Xueqian Zhang, Minglie Hu, "Additive and subtractive hybrid manufacturing assisted by femtosecond adaptive optics," Photonics Res. 12, 2772 (2024) Copy Citation Text show less
    References

    [1] M. Malinauskas, A. Žukauskas, S. Hasegawa. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [2] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [3] A. Y. Vorobyev, C. Guo. Direct femtosecond laser surface nano/microstructuring and its applications: direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev., 7, 385-407(2013).

    [4] G. Raciukaitis. Ultra-short pulse lasers for microfabrication: a review. IEEE J. Sel. Topics Quantum Electron., 27, 1100112(2021).

    [5] Y.-L. Zhang, Q.-D. Chen, H. Xia. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 5, 435-448(2010).

    [6] K. C. Phillips, H. H. Gandhi, E. Mazur. Ultrafast laser processing of materials: a review. Adv. Opt. Photonics, 7, 684-712(2015).

    [7] F. Sima, K. Sugioka, R. M. Vázquez. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 7, 613-634(2018).

    [8] A. Reiser, M. Lindén, P. Rohner. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat. Commun., 10, 1853(2019).

    [9] S. Kawata, H. B. Sun, T. Tanaka. Finer features for functional microdevices. Nature, 412, 697-698(2001).

    [10] T. Frenzel, M. Kadic, M. Wegener. Three-dimensional mechanical metamaterials with a twist. Science, 358, 1072-1074(2017).

    [11] D. Ge, A. Issa, S. Jradi. Advanced hybrid plasmonic nano-emitters using smart photopolymer. Photonics Res., 10, 1552-1566(2022).

    [12] G. Balčas, M. Malinauskas, M. Farsari. Fabrication of glass-ceramic 3D micro-optics by combining laser lithography and calcination. Adv. Funct. Mater., 33, 2215230(2023).

    [13] D. Gonzalez-Hernandez, S. Varapnickas, A. Bertoncini. Micro-optics 3D printed via multi-photon laser lithography. Adv. Opt. Mater., 11, 2201701(2023).

    [14] B. Rethfeld, D. S. Ivanov, M. E. Garcia. Modelling ultrafast laser ablation. J. Phys. D, 50, 193001(2017).

    [15] P. Balling, J. Schou. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep. Prog. Phys., 76, 036502(2013).

    [16] C. Kerse, H. Kalaycıoğlu, P. Elahi. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84-88(2016).

    [17] K. Sugioka, J. Xu, D. Wu. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip, 14, 3447-3458(2014).

    [18] C. Hnatovsky, R. S. Taylor, E. Simova. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett., 30, 1867-1869(2005).

    [19] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219-225(2008).

    [20] A. Plech, V. Kotaidis, M. Lorenc. Femtosecond laser near-field ablation from gold nanoparticles. Nat. Phys., 2, 44-47(2006).

    [21] S. H. Chung, E. Mazur. Surgical applications of femtosecond lasers. J. Biophotonics, 2, 557-572(2009).

    [22] B. N. Chicbkov, C. Momma, S. Nolte. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 63, 109-115(1996).

    [23] V. B. Nam, T. T. Giang, S. Koo. Laser digital patterning of conductive electrodes using metal oxide nanomaterials. Nano Converg., 7, 23(2020).

    [24] Z.-C. Ma, Y.-L. Zhang, B. Han. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods, 2, 1700413(2018).

    [25] H. Wei, Z. Wu, K. Sun. Two-photon 3D printed spring-based Fabry–Pérot cavity resonator for acoustic wave detection and imaging. Photonics Res., 11, 780-786(2023).

    [26] T. Gissibl, S. Thiele, A. Herkommer. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

    [27] N. Lindenmann, G. Balthasar, D. Hillerkuss. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667-17677(2012).

    [28] M. Blaicher, M. R. Billah, J. Kemal. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light Sci. Appl., 9, 71(2020).

    [29] J. Li, C. Wu, P. K. Chu. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R Rep., 140, 100543(2020).

    [30] K. Sugioka. Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review. Int. J. Extrem. Manuf., 1, 012003(2019).

    [31] D. Wu, S. Wu, J. Xu. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser Photonics Rev., 8, 458-467(2014).

    [32] G. Djogo, J. Li, S. Ho. Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging. Int. J. Extrem. Manuf., 1, 045002(2019).

    [33] A. Van Den Berg, M. Caruel, M. Hunt. Combining two-photon lithography with laser ablation of sacrificial layers: a route to isolated 3D magnetic nanostructures. Nano Res., 16, 1441-1447(2023).

    [34] P. Kunwar, Z. Xiong, Y. Zhu. Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures. Adv. Opt. Mater., 7, 1900656(2019).

    [35] A. Balena, M. Bianco, F. Pisanello. Recent advances on high-speed and holographic two-photon direct laser writing. Adv. Funct. Mater., 33, 2211773(2023).

    [36] J. Du, F. Li, F. Peng. Large-range and high-precision autofocus method based on an annular DOE for a laser direct writing system. Opt. Express, 30, 6981-6990(2022).

    [37] P. S. Salter, M. J. Booth. Adaptive optics in laser processing. Light Sci. Appl., 8, 110(2019).

    [38] J. Durnin. Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A, 4, 651-654(1987).

    [39] R. Stoian, M. K. Bhuyan, G. Zhang. Ultrafast Bessel beams: advanced tools for laser materials processing. Adv. Opt. Technol., 7, 165-174(2018).

    [40] M. Duocastella, C. B. Arnold. Bessel and annular beams for materials processing. Laser Photonics Rev., 6, 607-621(2012).

    [41] Y. Zhang, Y. Xu, C. Tian. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photonics Res., 6, 18-23(2018).

    [42] M. Yuan, Y. Li, Y. Lu. High-performance and compact broadband terahertz plasmonic waveguide intersection. Nanophotonics, 8, 1811-1819(2019).

    [43] E. Jia, C. Xie, N. Xiao. Two-photon polymerization of femtosecond high-order Bessel beams with aberration correction. Chin. Opt. Lett., 21, 071203(2023).

    [44] A. Ahmadivand, B. Gerislioglu, R. Ahuja. Terahertz plasmonics: the rise of toroidal metadevices towards immunobiosensings. Mater. Today, 32, 108-130(2020).

    [45] X. Yang, X. Zhao, K. Yang. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol., 34, 810-824(2016).

    [46] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [47] F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A, 7, S97-S101(2005).

    [48] B. Wetzel, C. Xie, P.-A. Lacourt. Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams. Appl. Phys. Lett., 103, 241111(2013).

    [49] A. Vasara, J. Turunen, A. T. Friberg. Realization of general nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am. A, 6, 1748-1754(1989).

    [50] E. Jia, C. Xie, Y. Yang. Generation and application of structured beams based on double-phase holograms [Invited]. Chin. Opt. Lett., 21, 110002(2023).

    [51] X. Liu, R. Clady, D. Grojo. Engraving depth-controlled nanohole arrays on fused silica by direct short-pulse laser ablation. Adv. Mater. Inter., 10, 2202189(2023).

    [52] Y. Yang, E. Jia, X. Ma. High throughput direct writing of a mesoscale binary optical element by femtosecond long focal depth beams. Light Adv. Manuf., 4, 37(2023).

    [53] E. G. Gamaly, A. V. Rode, B. Luther-Davies. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas, 9, 949-957(2002).

    [54] K. Sokolowski-Tinten, D. Von Der Linde. Generation of dense electron-hole plasmas in silicon. Phys. Rev. B, 61, 2643-2650(2000).

    [55] A. Y. Vorobyev, C. Guo. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express, 19, A1031-A1036(2011).

    [56] W. J. MoberlyChan, D. P. Adams, M. J. Aziz. Fundamentals of focused ion beam nanostructural processing: below, at, and above the surface. MRS Bull., 32, 424-432(2007).

    [57] X. Zhang, Y. Xu, W. Yue. Anomalous surface wave launching by handedness phase control. Adv. Mater., 27, 7123-7129(2015).

    [58] https://www.shiyanjia.com. https://www.shiyanjia.com

    Erse Jia, Chen Xie, Yue Yang, Xinyu Ma, Shixian Sun, Yanfeng Li, Xueqian Zhang, Minglie Hu, "Additive and subtractive hybrid manufacturing assisted by femtosecond adaptive optics," Photonics Res. 12, 2772 (2024)
    Download Citation