[1] F. Wang, Y. Lai, Q. Zhang, X. Yang, B. Li, C. Wu, H. Su, G. Jiang. Improved microwave dielectric properties of (Mg0.5Ti0.5)3+ Co-substituted Mg2Al4Si5O18 cordierite ceramics. Solid State Sci., 132, 106989(2022).
[2] X. Z. Yang, Y. M. Lai, Y. M. Zeng, F. Yang, F. Y. Huang, B. Y. Li, F. S. Wang, C. S. Wu, H. Su. Spinel-type solid solution ceramic MgAl2O4-Mg2TiO4 with excellent microwave dielectric properties. J. Alloys Compd., 898, 162905(2021).
[3] R. Xiang, H. Li, P. Zhang, X. Chen, H. Hu, Q. Wen, S. Liu. Crystal structure and microwave dielectric properties of Mg2Ti1−xGa4∕3xO4 (0.05≤x≤0.13) ceramics. Ceram. Int., 47, 8447(2021).
[4] I. Hameed, X. Q. Liu, L. Li, M. Y. Liu, X. M. Chen. Structure evolution and improved microwave dielectric characteristics in CaTi1−x(Al0.5Nb0.5)xO3 ceramics. J. Alloys Compd., 845, 155435(2020).
[5] R. Shi, S. Zhu, R. Muhammad, T. Zhou, B. Liu, M. Mao, D. Wang, K. Song. Degree of inversion of A/B lattice sites and microwave/millimeter wave/terahertz dielectric properties of MgAl2−x(Zn0.5Mn0.5)xO4 ceramics. J. Eur. Ceram. Soc., 43, 3324(2023).
[6] M. Zhou, B. Tang, S. Zhang. Effects of adding TEOS on sintering process,morphology and microwave dielectric properties of Y3Al5O12 ceramics. Ceram. Int., 47, 12826(2021).
[7] G. Wu, M. Ma, A. Li, K. Song, A. Khesro, H. B. Bafrooei, E. Taheri-nassaj, S. Luo, F. Shi, S. Sun, D. Wang. Crystal structure and microwave dielectric properties of Mg2+-Si4+ co-modified yttrium aluminum garnet ceramics. J. Mater. Sci. Mater. Electron., 33, 4712(2022).
[8] Z. Song, D. Zhou, Q. Liu. Tolerance factor and phase stability of the garnet structure. Acta Crystallogr. C,Struct. Chem., 75, 1353(2019).
[9] J. Chang, Y. Shen, Q. Bian, N. Zong, Z. Lv, Y. Bo, Q.-J. Peng. An exceed 60% efficiency Nd:YAG transparent ceramic laser with low attenuation loss effect. Front. Phys., 10, 1080275(2022).
[10] B. Brian, X. Yi. Synthesis and processing of transparent polycrystalline doped yttrium aluminum garnet: A review. Mater. Res. Lett., 11, 1(2022).
[11] D. Liang, C. R. Vistas, D. Garcia, B. D. Tibúrcio, M. Catela, H. Costa, E. Guillot, J. Almeida. Most efficient simultaneous solar laser emissions from three Ce:Nd:YAG rods within a single pump cavity. Sol. Energy Mater. Sol. Cells, 246, 111921(2022).
[12] K. D. Jerzy Krupka, Michael Tobar, John Hartnett, Richard G. Geyer. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol., 10, 387(1999).
[13] I. Kagomiya, Y. Matsuda, K. Kakimoto, H. Ohsato. Microwave dielectric properties of YAG ceramics. Ferroelectrics, 387, 1(2009).
[14] J. Li, M. Nikl, E. Mihóková, Y. Pan, X. Li, X. Liu, Z. Hu, X. Chen, K. Qian, D. Zhu. Fine-grained Ce,Y:SrHfO3 scintillation ceramics fabricated by hot isostatic pressing. J. Inorg. Mater., 36, 1118(2021).
[15] L. Chrétien, L. Bonnet, R. Boulesteix, A. Maître, C. Sallé, A. Brenier. Influence of hot isostatic pressing on sintering trajectory and optical properties of transparent Nd:YAG ceramics. J. Eur. Ceram. Soc., 36, 2035(2016).
[16] S. Li, P. Ma, X. Zhu, N. Jiang, M. Ivanov, C. Li, T. Xie, H. Kou, Y. Shi, H. Chen, Y. Pan, D. Hreniak, J. Li. Post-treatment of nanopowders-derived Nd:YAG transparent ceramics by hot isostatic pressing. Ceram. Int., 43, 10013(2017).
[17] X. Li, J. Yin, Y. Lai, X. Zhang, S. Yu. Improved microstructure and optical properties of Nd:YAG ceramics by hot isostatic pressing. Ceram. Int., 49, 31939(2023).
[18] X. Li, X. Yang, Y. Lai, Q. Zhang, B. Li, C. Qi, J. Yin, F. Wang, C. Wu, H. Su. Improved microwave dielectric properties of MgAl2O4 spinel ceramics through (Li1∕3Ti2∕3)3+ doping. Chin. Phys. B, 32, 57701(2023).
[19] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 32, 751(1976).
[20] H. H. Otto. Modeling of a cubic antiferromagnetic cuprate super-cage. World J. Condens. Matter Phys., 5, 160(2015).
[21] A. H. Mir, N. C. Hyatt, S. E. Donnelly. An in-situ TEM study into the role of disorder,temperature and ballistic collisions on the accumulation of helium bubbles and voids in glass-ceramic composites. J. Nucl. Mater., 548, 152836(2021).
[22] M. Yuan, Y. Cao, T. Zhou, C. Shao, X. Zheng, M. Liu, Z. Cai, C. Zhao, Y. Li, L. Zhang, H. Chen. Fabrication of heavily doped Nd:YAG transparent ceramics and their thin disc solid state laser performance. Ceram. Int., 48, 27799(2022).
[23] W. Jin, W. Yin, S. Yu, M. Tang, T. Xu, B. Kang, H. Huang. Microwave dielectric properties of pure YAG transparent ceramics. Mater. Lett., 173, 47(2016).
[24] S. Yu, W. Jing, W. Yin, M. Tang, T. Xu, B. Kang. Microwave dielectric properties of Nd:YAG transparent ceramics. J. Mater. Sci. Mater. Electron., 27, 9767(2016).
[25] H. Yang, X. Qin, J. Zhang, J. Ma, D. Tang, S. Wang, Q. Zhang. The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic. Opt. Mater., 34, 940(2012).
[26] M. A. Chaika, G. Mancardi, O. M. Vovk. Influence of CaO and SiO2 additives on the sintering behavior of Cr,Ca:YAG ceramics prepared by solid-state reaction sintering. Ceram. Int., 46, 22781(2020).
[27] R. D. Shannon. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys., 73, 348(1993).
[28] E. S. Kim, B. S. Chun, R. Freer, R. J. Cernik. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+:Ca,Pb,Ba; B6+:Mo,W) ceramics. J. Eur. Ceram. Soc., 30, 1731(2010).
[29] A. Sunny, V. Viswanath, K. Peethambharan Surendran, M. Thomas Sebastian. The effect of Ga3+ addition on the sinterability and microwave dielectric properties of RE3Al5O12 (Tb3+,Y3+,Er3+ and Yb3+) garnet ceramics. Ceram. Int., 40, 4311(2014).
[30] M. Zhou, B. Tang, Z. Xiong, X. Zhang, S. Zhang. Effects of MgO doping on microwave dielectric properties of yttrium aluminum garnet ceramics. J. Alloys Compd., 858, 158139(2021).
[31] B. I. D. Brown, D. Altermatt. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B,Struct. Sci., 41, 244(1985).
[32] J. Li, L. Fang, H. Luo, Y. Tang, C. C. Li. Structure and microwave dielectric properties of a novel temperature stable low-firing Ba2LaV3O11 ceramic. J. Eur. Ceram. Soc., 36, 2143(2016).
[33] K. Cheng, C. Li, C. Yin, Y. Tang, Y. Sun, L. Fang. Effects of Sr2+ substitution on the crystal structure,Raman spectra,bond valence and microwave dielectric properties of Ba3−xSrx(VO4)2 solid solutions. J. Eur. Ceram. Soc., 39, 3738(2019).
[34] F. Yang, Y. M. Lai, Y. M. Zeng, Q. Zhang, J. Han, X. L. Zhong, H. Su. Ultra-high quality factor and low dielectric constant of (Zn0.5Ti0.5)3+ co-substituted MgAl2O4 ceramic. Ceram. Int., 47, 22522(2021).