• Nano-Micro Letters
  • Vol. 16, Issue 1, 184 (2024)
Fuyu Chen1,2, Bai-Qing Zhao3, Kaifeng Huang1,2, Xiu-Fen Ma1,2..., Hong-Yi Li1,2,*, Xie Zhang4, Jiang Diao1,2, Jili Yue1,2, Guangsheng Huang1,2, Jingfeng Wang1,2 and Fusheng Pan1,2,5,**|Show fewer author(s)
Author Affiliations
  • 1National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
  • 2National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing 400044, People’s Republic of China
  • 3Materials and Energy Division, Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
  • 4School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
  • 5National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01410-8 Cite this Article
    Fuyu Chen, Bai-Qing Zhao, Kaifeng Huang, Xiu-Fen Ma, Hong-Yi Li, Xie Zhang, Jiang Diao, Jili Yue, Guangsheng Huang, Jingfeng Wang, Fusheng Pan. Dual-Defect Engineering Strategy Enables High-Durability Rechargeable Magnesium-Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 184 Copy Citation Text show less
    References

    [1] C. Wei, L. Tan, Y. Zhang, Z. Wang, J. Feng et al., Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022).

    [2] F. Liu, G. Cao, J. Ban, H. Lei, Y. Zhang et al., Recent advances based on Mg anodes and their interfacial modulation in Mg batteries. J. Magnes. Alloys 10, 2699–2716 (2022).

    [3] Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024).

    [4] H. Duan, Y. You, G. Wang, X. Ou, J. Wen et al., Lithium-ion charged polymer channels flattening lithium metal anode. Nano-Micro Lett. 16, 78 (2024).

    [5] Y. Zhu, G. Huang, J. Yin, Y. Lei, A.-H. Emwas et al., Hydrated MgxV5O12 cathode with improved Mg2+ storage performance. Adv. Energy Mater. 10, 2002128 (2020).

    [6] L. Wang, Z. Li, Z. Meng, Y. Xiu, B. Dasari et al., Designing gel polymer electrolyte with synergetic properties for rechargeable magnesium batteries. Energy Storage Mater. 48, 155–163 (2022).

    [7] S.-B. Son, T. Gao, S.P. Harvey, K.X. Steirer, A. Stokes et al., An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018).

    [8] X. Wang, X. Zhang, G. Zhao, H. Hong, Z. Tang et al., Ether-water hybrid electrolyte contributing to excellent Mg ion storage in layered sodium vanadate. ACS Nano 16, 6093–6102 (2022).

    [9] L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong et al., Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 30, e1801984 (2018).

    [10] Y.S. Joe, M.S. Kang, G. Jang, S.J. Lee, P. Nakhanivei et al., Intercalation of bilayered V2O5 by electronically coupled PEDOT for greatly improved kinetic performance of magnesium ion battery cathodes. Chem. Eng. J. 460, 141706 (2023).

    [11] X. Du, G. Huang, Y. Qin, L. Wang, Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv. 5, 76352–76355 (2015).

    [12] X.-F. Ma, H.-Y. Li, W. Ren, D. Gao, F. Chen et al., A critical review of vanadium-based electrode materials for rechargeable magnesium batteries. J. Mater. Sci. Technol. 153, 56–74 (2023).

    [13] Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2370120 (2023).

    [14] M. Kotobuki, B. Yan, L. Lu, Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Mater. 54, 227–253 (2023).

    [15] M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).

    [16] X. Peng, X. Zhang, L. Wang, L. Hu, S.H.-S. Cheng et al., Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 26, 784–791 (2016).

    [17] Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018).

    [18] Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong et al., Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5, 1194–1209 (2019).

    [19] N. Sa, T.L. Kinnibrugh, H. Wang, G. Sai Gautam, K.W. Chapman et al., Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material. Chem. Mater. 28, 2962–2969 (2016).

    [20] X. Deng, Y. Xu, Q. An, F. Xiong, S. Tan et al., Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J. Mater. Chem. A 7, 10644–10650 (2019).

    [21] C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019).

    [22] C. Zuo, Y. Xiao, X. Pan, F. Xiong, W. Zhang et al., Organic-inorganic superlattices of vanadium Oxide@Polyaniline for high-performance magnesium-ion batteries. ChemSusChem 14, 2093–2099 (2021).

    [23] Z. Yao, Y. Yu, Q. Wu, M. Cui, X. Zhou et al., Maximizing magnesiation capacity of nanowire cluster oxides by conductive macromolecule pillaring and multication intercalation. Small 17, e2102168 (2021).

    [24] Z. Liu, H. Sun, L. Qin, X. Cao, J. Zhou et al., Interlayer doping in layered vanadium oxides for low-cost energy storage: sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 6, 1553–1566 (2020).

    [25] X. Liang, L. Yan, W. Li, Y. Bai, C. Zhu et al., Flexible high-energy and stable rechargeable vanadium-zinc battery based on oxygen defect modulated V2O5 cathode. Nano Energy 87, 106164 (2021).

    [26] P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018).

    [27] J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33, 2305659 (2023).

    [28] J. Yang, X. Wang, J. Wang, X. Dong, L. Zhu et al., Ab initio investigations on metal ion pre-intercalation strategy of layered V2O5 cathode for magnesium-ion batteries. Appl. Surf. Sci. 569, 150983 (2021).

    [29] H. Tang, F. Xiong, Y. Jiang, C. Pei, S. Tan et al., Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019).

    [30] Z. Li, Y. Xu, L. Wu, J. Cui, H. Dou et al., Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells. Nat. Commun. 14, 6816 (2023).

    [31] Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15, 87 (2023).

    [32] B. Zhang, X. Han, W. Kang, D. Sun, Structure and oxygen-defect regulation of hydrated vanadium oxide for enhanced zinc ion storage via interlayer doping strategy. Nano Res. 16, 6094–6103 (2023).

    [33] Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu et al., Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 13, 2301480 (2023).

    [34] S. Li, X. Xu, W. Chen, J. Zhao, K. Wang et al., Synergetic impact of oxygen and vanadium defects endows NH4V4O10 cathode with superior performances for aqueous zinc-ion battery. Energy Storage Mater. 65, 103108 (2024).

    [35] M.-X. Wang, Q. Liu, Z.-F. Li, H.-F. Sun, E.A. Stach et al., Structural modification of graphene sheets to create a dense network of defect sites. J. Phys. Chem. Lett. 4, 1484–1488 (2013).

    [36] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    [37] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    [38] Y. Zhang, L. Xu, H. Jiang, Y. Liu, C. Meng, Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. J. Colloid Interface Sci. 603, 641–650 (2021).

    [39] X. Zhao, L. Li, L. Zheng, L. Fan, Y. Yi et al., 3d-orbital regulation of transition metal intercalated vanadate as optimized cathodes for calcium-ion batteries. Adv. Funct. Mater. 34, 2309753 (2024).

    [40] Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14, 5581–5589 (2020).

    [41] H.-H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8, 6849 (2018).

    [42] P. Zhang, Z. Li, S. Zhang, G. Shao, Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 1, 5–12 (2018).

    [43] S. Liu, H. Xu, X. Bian, J. Feng, J. Liu et al., Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano 12, 7380–7387 (2018).

    [44] C.A. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han, Y. Xu, Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16, 1 (2024).

    [45] Z. Tan, X. Chen, Y. Li, X. Xi, S. Hao et al., Enabling superior cycling stability of LiNi0.9Co0.05Mn0.05O2 with controllable internal strain. Adv. Funct. Mater. 33, 2215123 (2023).

    [46] S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-MnO2@Graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13, 173 (2021).

    [47] Q. Wang, H. Li, R. Zhang, Z. Liu, H. Deng et al., Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Storage Mater. 51, 630–637 (2022).

    [48] P.W. Ruch, D. Cericola, M. Hahn, R. Kötz, A. Wokaun, On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions. J. Electroanal. Chem. 636, 128–131 (2009).

    [49] D. Wu, Y. Zhuang, F. Wang, Y. Yang, J. Zeng et al., High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16, 4880–4887 (2023).

    [50] J.J. Wang, S.S. Tan, G.B. Zhang, Y.L. Jiang, Y.M. Yin et al., Fast and stable Mg2+ intercalation in a high voltage NaV2O2(PO4)2F/rGO cathode material for magnesium-ion batteries. Sci. China Mater. 63(9), 1651–1662 (2020).

    [51] X.-F. Ma, H.-Y. Li, X. Zhu, W. Ren, X. Zhang et al., Switchable and strain-releasable Mg-ion diffusion nanohighway enables high-capacity and long-life pyrovanadate cathode. Small 18, e2202250 (2022).

    [52] M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018).

    [53] L. Wei, R. Lian, D. Wang, Y. Zhao, D. Yang et al., Magnesium ion storage properties in a layered (NH4)2V6O16·1.5H2O nanobelt cathode material activated by lattice water. ACS Appl. Mater. Interfaces 13, 30625–30632 (2021).

    [54] R. Sun, X. Ji, C. Luo, S. Hou, P. Hu et al., Water-pillared sodium vanadium bronze nanowires for enhanced rechargeable magnesium ion storage. Small 16, 2000741 (2020).

    [55] Y. Du, Y. Chen, S. Tan, J. Chen, X. Huang et al., Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping. Energy Storage Mater. 62, 102939 (2023).

    [56] J. Xiao, X. Zhang, H. Fan, Y. Zhao, Y. Su et al., Stable solid electrolyte interphase in situ formed on magnesium-metal anode by using a perfluorinated alkoxide-based all-magnesium salt electrolyte. Adv. Mater. 34, e2203783 (2022).

    [57] Y. Cheng, Y. Shao, V. Raju, X. Ji, B.L. Mehdi et al., Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 26, 3446–3453 (2016).

    [58] M. Rashad, H. Zhang, M. Asif, K. Feng, X. Li et al., Low-cost room-temperature synthesis of NaV3O8·1.69H2O nanobelts for Mg batteries. ACS Appl. Mater. Interfaces 10, 4757–4766 (2018).

    [59] C. Wu, G. Zhao, X. Yu, C. Liu, P. Lyu et al., MoS2/graphene heterostructure with facilitated Mg-diffusion kinetics for high-performance rechargeable magnesium batteries. Chem. Eng. J. 412, 128736 (2021).

    [60] J.H. Ha, B. Lee, J.H. Kim, B.W. Cho, S.-O. Kim et al., Silver chalcogenides (Ag2X, X=S, Se) nanoparticles embedded in carbon matrix for facile magnesium storage via conve-rsion chemistry. Energy Storage Mater. 27, 459–465 (2020).

    [61] F. Liu, Y. Liu, X. Zhao, X. Liu, L.-Z. Fan, Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J. Mater. Chem. A 7, 16712–16719 (2019).

    Fuyu Chen, Bai-Qing Zhao, Kaifeng Huang, Xiu-Fen Ma, Hong-Yi Li, Xie Zhang, Jiang Diao, Jili Yue, Guangsheng Huang, Jingfeng Wang, Fusheng Pan. Dual-Defect Engineering Strategy Enables High-Durability Rechargeable Magnesium-Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 184
    Download Citation