• Nano-Micro Letters
  • Vol. 16, Issue 1, 224 (2024)
Qiao Zhou1, Cenqi Yan1,*, Hongxiang Li1, Zhendong Zhu1..., Yujie Gao1, Jie Xiong1, Hua Tang2, Can Zhu3, Hailin Yu1, Sandra P. Gonzalez Lopez2, Jiayu Wang1, Meng Qin1, Jianshu Li1, Longbo Luo1,**, Xiangyang Liu1, Jiaqiang Qin1, Shirong Lu4, Lei Meng3, Frédéric Laquai2, Yongfang Li3 and Pei Cheng1,***|Show fewer author(s)
Author Affiliations
  • 1College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
  • 2KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) Thuwal, Kingdom of Saudi Arabia
  • 3Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
  • 4Department of Material Science and Technology, Taizhou University, Taizhou 318000, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01442-0 Cite this Article
    Qiao Zhou, Cenqi Yan, Hongxiang Li, Zhendong Zhu, Yujie Gao, Jie Xiong, Hua Tang, Can Zhu, Hailin Yu, Sandra P. Gonzalez Lopez, Jiayu Wang, Meng Qin, Jianshu Li, Longbo Luo, Xiangyang Liu, Jiaqiang Qin, Shirong Lu, Lei Meng, Frédéric Laquai, Yongfang Li, Pei Cheng. Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics[J]. Nano-Micro Letters, 2024, 16(1): 224 Copy Citation Text show less
    References

    [1] N. Li, C.J. Brabec, Washing away barriers. Nat. Energy 2(10), 772–773 (2017).

    [2] G. Wang, M.A. Adil, J. Zhang, Z. Wei, Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater. 31(45), 1805089 (2019).

    [3] P. Cheng, G. Li, X. Zhan, Y. Yang, Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 12(3), 131–142 (2018).

    [4] J. Zhang, H.S. Tan, X. Guo, A. Facchetti, H. Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3(9), 720–731 (2018).

    [5] Y. Hu, J. Wang, C. Yan, P. Cheng, The multifaceted potential applications of organic photovoltaics. Nat. Rev. Mater. 7(11), 836–838 (2022).

    [6] C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.Y. Jen et al., Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3(3), 18003 (2018).

    [7] H. Yu, J. Wang, Q. Zhou, J. Qin, Y. Wang et al., Semi-transparent organic photovoltaics. Chem. Soc. Rev. 52(13), 4132–4148 (2023).

    [8] R. Ma, X. Jiang, J. Fu, T. Zhu, C. Yan et al., Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined ex situ and in situ observations. Energy Environ. Sci. 16(5), 2316–2326 (2023).

    [9] J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 6(9), 614–634 (2022).

    [10] Q. Zhu, Y. Zhu, Q. Wu, Y. Ma, R. Liao et al., Highly ductile, stable, and efficient organic photovoltaic blends enabled by polymerized ladder-type heteroheptacene-based small-molecule acceptors. Chem. Eng. J. 466, 143062 (2023).

    [11] X. Xu, Q. Wei, Z. Zhou, H. He, J. Tian et al., Efficient semitransparent organic solar cells with CRI over 90% enabled by an ultralow-bandgap A-DA’D-a small molecule acceptor. Adv. Funct. Mater. 33, 2305017 (2023).

    [12] J. Wang, Y. Wang, P. Bi, Z. Chen, J. Qiao et al., Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater. 35(25), 2301583 (2023).

    [13] L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao et al., Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater. 32(11), 1907604 (2020).

    [14] X. Yuan, Y. Zhao, D. Xie, L. Pan, X. Liu et al., Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule 6(3), 647–661 (2022).

    [15] W. Kong, J. Wang, Y. Hu, N. Cui, C. Yan et al., P-type polymers in semitransparent organic photovoltaics. Angew. Chem. Int. Ed. 62, e202307622 (2023).

    [16] B. Zou, W. Wu, T.A. Dela Peña et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. (2024).

    [17] T. Xu, Z. Luo, R. Ma, Z. Chen, T.A. Dela Peña et al., High-performance organic solar cells containing pyrido [2,3-b] quinoxaline-core-based small-molecule acceptors with optimized orbit overlap lengths and molecular packing. Angew. Chem. Int. Ed. 62(30), e202304127 (2023).

    [18] J. Yu, Y. Xi, C.-C. Chueh, J.-Q. Xu, H. Zhong et al., Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. Nano Energy 39, 454–460 (2017).

    [19] H. Zhang, G. Ran, X. Cui, Y. Liu, Z. Yin et al., Mitigating exciton recombination losses in organic solar cells by engineering nonfullerene molecular crystallization behavior. Adv. Energy Mater. 13, 2302063 (2023).

    [20] G. Ding, T. Chen, M. Wang et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett. 15, 92 (2023).

    [21] Y. Jiang, Y. Li, F. Liu, W. Wang, W. Su et al., Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat. Commun. 14(1), 5079 (2023).

    [22] H. Bai, R. Ma, W. Su, T. Archie Dela Peña, T. Li, et al., Green-solvent processed blade-coating organic solar cells with an efficiency approaching 19% enabled by alkyl-tailored acceptors. Nano-Micro Lett. 15, 241 (2023).

    [23] M. Liu, X. Ge, X. Jiang, D. Chen, F. Guo et al., 18% efficiency of ternary organic solar cells enabled by integrating a fused perylene diimide guest acceptor. Nano Energy 112, 108501 (2023).

    [24] J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu et al., Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-Micro Lett. 13, 44 (2021).

    [25] L. Kong, Z. Zhang, N. Zhao, Z. Cai, J. Zhang et al., In situ removable additive assisted organic solar cells achieving efficiency over 19% and fill factor exceeding 81%. Adv. Energy Mater. 13(25), 2300763 (2023).

    [26] Y. Li, J. Wu, H. Tang, X. Yi, Z. Liu et al., Non-halogenated solvents and layer-by-layer blade-coated ternary organic solar cells via cascade acceptor adjusting morphology and crystallization to reduce energy loss. ACS Appl. Mater. Interfaces 14(27), 31054–31065 (2022).

    [27] D.-L. Ma, Q.-Q. Zhang, C.-Z. Li, Unsymmetrically chlorinated non-fused electron acceptor leads to high-efficiency and stable organic solar cells. Angew. Chem. Int. Ed. 62(5), e202214931 (2023).

    [28] E.M. Speller, A.J. Clarke, J. Luke, H.K.H. Lee, J.R. Durrant et al., From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7(41), 23361–23377 (2019).

    [29] N. Li, I. McCulloch, C.J. Brabec, Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11(6), 1355–1361 (2018).

    [30] W. Li, D. Liu, T. Wang, Stability of non-fullerene electron acceptors and their photovoltaic devices. Adv. Funct. Mater. 31(41), 2104552 (2021).

    [31] P. Cheng, X. Zhan, Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45(9), 2544–2582 (2016).

    [32] A. Guerrero, G. Garcia-Belmonte, Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett. 9, 10 (2017).

    [33] X. Gu, Y. Wei, G. Lu, Z. Han, D. Zheng et al., Insight into the efficiency-stability-cost balanced organic solar cell based on a polymerized nonfused-ring electron acceptor. Aggregate 4, e388 (2023).

    [34] Y. Wu, Q. Fan, B. Fan, F. Qi, Z. Wu et al., Non-fullerene acceptor doped block copolymer for efficient and stable organic solar cells. ACS Energy Lett. 7(7), 2196–2202 (2022).

    [35] E. Verploegen, R. Mondal, C.J. Bettinger, S. Sok, M.F. Toney et al., Effects of thermal annealing upon the morphology of polymer–fullerene blends. Adv. Funct. Mater. 20(20), 3519–3529 (2010).

    [36] N. Li, J.D. Perea, T. Kassar, M. Richter, T. Heumueller et al., Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 8(1), 14541 (2017).

    [37] L. Derue, O. Dautel, A. Tournebize, M. Drees, H. Pan et al., Thermal stabilisation of polymer–fullerene bulk heterojunction morphology for efficient photovoltaic solar cells. Adv. Mater. 26(33), 5831–5838 (2014).

    [38] Y.-J. Cheng, C.-H. Hsieh, P.-J. Li, C.-S. Hsu, Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv. Funct. Mater. 21(9), 1723–1732 (2011).

    [39] C.-P. Chen, C.-Y. Huang, S.-C. Chuang, Highly thermal stable and efficient organic photovoltaic cells with crosslinked networks appending open-cage fullerenes as additives. Adv. Funct. Mater. 25(2), 207–213 (2015).

    [40] Y. Cheng, B. Huang, X. Huang, L. Zhang, S. Kim et al., Oligomer-assisted photoactive layers enable >18 % efficiency of organic solar cells. Angew. Chem. Int. Ed. 61(21), e202200329 (2022).

    [41] R. Sun, W. Wang, H. Yu, Z. Chen, X. Xia et al., Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule 5(6), 1548–1565 (2021).

    [42] Z. Zhang, J. Miao, Z. Ding, B. Kan, B. Lin et al., Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun. 10(1), 3271 (2019).

    [43] P. Cheng, C. Yan, Y. Wu, J. Wang, M. Qin et al., Alloy acceptor: superior alternative to pcbm toward efficient and stable organic solar cells. Adv. Mater. 28(36), 8021–8028 (2016).

    [44] T. Jia, J. Zhang, W. Zhong, Y. Liang, K. Zhang et al., 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 72, 104718 (2020).

    [45] H. Fu, Y. Li, J. Yu, Z. Wu, Q. Fan et al., High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J. Am. Chem. Soc. 143(7), 2665–2670 (2021).

    [46] L. Zhang, Z. Zhang, D. Deng, H. Zhou, J. Zhang et al., “N-π-N” type oligomeric acceptor achieves an OPV efficiency of 18.19% with low energy loss and excellent stability. Adv. Sci. 9(23), 2202513 (2022).

    [47] W. Wang, R. Sun, J. Guo, J. Guo, J. Min, An oligothiophene–fullerene molecule with a balanced donor–acceptor backbone for high-performance single-component organic solar cells. Angew. Chem. Int. Ed. 58(41), 14556–14561 (2019).

    [48] Q. Bai, Q. Liang, H. Li, H. Sun, X. Guo et al., Recent progress in low-cost noncovalently fused-ring electron acceptors for organic solar cells. Aggregate 3(6), e281 (2022).

    [49] P. Cheng, C. Yan, T.-K. Lau, J. Mai, X. Lu et al., Molecular lock: a versatile key to enhance efficiency and stability of organic solar cells. Adv. Mater. 28(28), 5822–5829 (2016).

    [50] S. Li, L. Zhan, F. Liu, J. Ren, M. Shi et al., An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 30(6), 1705208 (2018).

    [51] J. Wang, C. Han, F. Bi, D. Huang, Y. Wu et al., Overlapping fasten packing enables efficient dual-donor ternary organic solar cells with super stretchability. Energy Environ. Sci. 14(11), 5968–5978 (2021).

    [52] J.-W. Lee, C. Sun, D.J. Kim, M.Y. Ha, D. Han et al., Donor–acceptor alternating copolymer compatibilizers for thermally stable, mechanically robust, and high-performance organic solar cells. ACS Nano 15(12), 19970–19980 (2021).

    [53] X. Lai, S. Chen, X. Gu, H. Lai, Y. Wang et al., Phenanthroline-carbolong interface suppress chemical interactions with active layer enabling long-time stable organic solar cells. Nat. Commun. 14(1), 3571 (2023).

    [54] J.M. García, F.C. García, F. Serna, J.L. de la Peña, High-performance aromatic polyamides. Prog. Polym. Sci. 35(5), 623–686 (2010).

    [55] E.G. Chatzi, J.L. Koenig, Morphology and structure of kevlar fibers: a review. Polym.-Plast. Technol. Eng. 26(3–4), 229–270 (1987).

    [56] B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019).

    [57] J.I. Khan, R.S. Ashraf, M.A. Alamoudi, M.N. Nabi, H.N. Mohammed et al., P3HT molecular weight determines the performance of P3HT:O-IDTBR solar cells. Sol. RRL 3(8), 1900023 (2019).

    [58] J.I. Khan, M.A. Alamoudi, N. Chaturvedi, R.S. Ashraf, M.N. Nabi et al., Impact of acceptor quadrupole moment on charge generation and recombination in blends of IDT-based non-fullerene acceptors with PCE10 as donor polymer. Adv. Energy Mater. 11(28), 2100839 (2021).

    [59] S. Karuthedath, Y. Firdaus, R.-Z. Liang, J. Gorenflot, P.M. Beaujuge et al., Impact of fullerene on the photophysics of ternary small molecule organic solar cells. Adv. Energy Mater. 9(33), 1901443 (2019).

    [60] O.J. Sandberg, K. Tvingstedt, P. Meredith, A. Armin, Theoretical perspective on transient photovoltage and charge extraction techniques. J. Phys. Chem. C 123(23), 14261–14271 (2019).

    [61] R.C.I. MacKenzie, C.G. Shuttle, M.L. Chabinyc, J. Nelson, Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells. Adv. Energy Mater. 2(6), 662–669 (2012).

    [62] T.M. Clarke, C. Lungenschmied, J. Peet, N. Drolet, A.J. Mozer, A comparison of five experimental techniques to measure charge carrier lifetime in polymer/fullerene solar cells. Adv. Energy Mater. 5(4), 1401345 (2015).

    [63] J.R. Brown, B.C. Ennis, Thermal analysis of nomex® and kevlar® fibers. Text. Res. J. 47(1), 62–66 (1977).

    [64] E. Gutierrez-Fernandez, A.D. Scaccabarozzi, A. Basu, E. Solano, T.D. Anthopoulos et al., Y6 organic thin-film transistors with electron mobilities of 2.4 cm2 V−1 s−1 via microstructural tuning. Adv. Sci. 9(1), 2104977 (2022).

    [65] H. Li, X. Liu, T. Jin, K. Zhao, Q. Zhang et al., Optimizing the intercrystallite connection of a donor–acceptor conjugated semiconductor polymer by controlling the crystallization rate via temperature. Macromol. Rapid Commun. 43(16), 2200084 (2022).

    [66] H. Li, H. Yang, L. Zhang, S. Wang, Y. Chen et al., Optimizing the crystallization behavior and film morphology of donor–acceptor conjugated semiconducting polymers by side-chain–solvent interaction in nonpolar solvents. Macromolecules 54(22), 10557–10573 (2021).

    [67] S. Karuthedath, J. Gorenflot, Y. Firdaus, N. Chaturvedi, C.S.P. De Castro et al., Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater. 20(3), 378–384 (2021).

    [68] H. Tang, Z. Liao, S. Karuthedath, S. Chen, H. Liu et al., Rationale for highly efficient and outdoor-stable terpolymer solar cells. Energy Environ. Sci. 16(5), 2056–2067 (2023).

    [69] D. Hu, H. Tang, S. Karuthedath, Q. Chen, S. Chen et al., A volatile solid additive enables oligothiophene all-small-molecule organic solar cells with excellent commercial viability. Adv. Funct. Mater. 33(6), 2211873 (2023).

    Qiao Zhou, Cenqi Yan, Hongxiang Li, Zhendong Zhu, Yujie Gao, Jie Xiong, Hua Tang, Can Zhu, Hailin Yu, Sandra P. Gonzalez Lopez, Jiayu Wang, Meng Qin, Jianshu Li, Longbo Luo, Xiangyang Liu, Jiaqiang Qin, Shirong Lu, Lei Meng, Frédéric Laquai, Yongfang Li, Pei Cheng. Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics[J]. Nano-Micro Letters, 2024, 16(1): 224
    Download Citation