[3] BALZER J C. THz systems exploiting photonics and communications technologies[J]. IEEE Journal of Microwaves, 2023, 3(1): 268-288. doi: 10.1109/JMW.2022.3228118.
[4] ERMOLOV V, LAMMINEN A, SAARILAHTI J, et al. Wafer level integration of Sub-THz and THz systems[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(2): 187-190. doi: 10.1109/LMWT.2023.3341169.
[8] PARK J H, YANG D Y, CHOI K J, et al. D-band×8 frequency multiplier using complementary differential frequency doubler[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(3): 311-314. doi: 10.1109/LMWC.2022.3216019.
[9] KUCHARSKI M, EISSA M H, MALIGNAGGI A, et al. D-band frequency quadruplers in BiCMOS technology[J]. IEEE Journal of Solid-State Circuits, 2018, 53(9): 2465-2478. doi: 10.1109/JSSC.2018.2843332.
[10] CARPENTER S, HE Z S, ZIRATH H. Balanced active frequency multipliers in D and G bands using 250 nm InP DHBT technology[C]//2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). Miami, FL, USA: IEEE, 2017: 1-4. doi: 10.1109/CSICS.2017.8240437.
[11] ROMSTADT J, ZABEN A, PAPURCU H, et al. A SiGe D-band×12 frequency multiplier with Gilbert cell-based tripler[C]//2022 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). Phoenix, AZ, USA: IEEE, 2022: 195-198. doi: 10.1109/BCICTS53451.2022.10051705.
[12] DOU Jiangling, JIANG Shu, XU Jinping, et al. Design of D-band frequency doubler with compact power combiner[J]. Electronics Letters, 2017, 53(7): 478-480. doi: 10.1049/el.2016.3788.