• Chinese Optics Letters
  • Vol. 22, Issue 11, 112701 (2024)
Peiming Li1, Xiaojin Chen1, Xiaodong Qiu2,3, Binglin Chen1..., Lixiang Chen2,* and Baoqing Sun1,4,**|Show fewer author(s)
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • 2Department of Physics, Xiamen University, Xiamen 361005, China
  • 3Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
  • 4Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • show less
    DOI: 10.3788/COL202422.112701 Cite this Article Set citation alerts
    Peiming Li, Xiaojin Chen, Xiaodong Qiu, Binglin Chen, Lixiang Chen, Baoqing Sun, "Ghost imaging, development, and recent advances [Invited]," Chin. Opt. Lett. 22, 112701 (2024) Copy Citation Text show less
    References

    [1] T. B. Pittman, Y. H. Shih, D. V. Strekalov et al. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429(1995).

    [2] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko et al. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett., 74, 3600(1995).

    [3] D. N. Klyshko. Two-photon light: influence of filtration and a new possible epr experiment. Phys. Lett. A, 128, 133(1988).

    [4] T. B. Pittman, D. V. Strekalov, D. N. Klyshko et al. Two-photon geometric optics. Phys. Rev. A, 53, 2804(1996).

    [5] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko et al. Role of entanglement in two-photon imaging. Phys. Rev. Lett., 87, 123602(2001).

    [6] R. S. Bennink, S. J. Bentley, R. W. Boyd. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett., 89, 113601(2002).

    [7] A. Gatti, E. Brambilla, L. A. Lugiato. Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm. Phys. Rev. Lett., 90, 133603(2003).

    [8] R. S. Bennink, S. J. Bentley, R. W. Boyd et al. Quantum and classical coincidence imaging. Phys. Rev. Lett., 92, 033601(2004).

    [9] M. D’Angelo, Y.-H. Kim, S. P. Kulik et al. Identifying entanglement using quantum ghost interference and imaging. Phys. Rev. Lett., 92, 233601(2004).

    [10] A. Gatti, E. Brambilla, M. Bache et al. Correlated imaging, quantum and classical. Phys. Rev. A, 70, 013802(2004).

    [11] J. Cheng, S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).

    [12] A. Valencia, G. Scarcelli, M. D’Angelo et al. Two-photon imaging with thermal light. Phys. Rev. Lett., 94, 063601(2005).

    [13] F. Ferri, D. Magatti, A. Gatti et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett., 94, 183602(2005).

    [14] R. S. Aspden, N. R. Gemmell, P. A. Morris et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica, 2, 1049(2015).

    [15] P. A. Morris, R. S. Aspden, J. E. C. Bell et al. Imaging with a small number of photons. Nat. Commun., 6, 5913(2015).

    [16] E. Toninelli, P.-A. Moreau, T. Gregory et al. Resolution-enhanced quantum imaging by centroid estimation of biphotons. Optica, 6, 347(2019).

    [17] M. Tsang. Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett., 102, 253601(2009).

    [18] G. Brida, M. Genovese, I. R. Berchera. Experimental realization of sub-shot-noise quantum imaging. Nat. Photonics, 4, 227(2010).

    [19] N. Samantaray, I. Ruo-Berchera, A. Meda et al. Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl., 6, e17005(2017).

    [20] J. H. Shapiro. Computational ghost imaging. Phys. Rev. A, 78, 061802(2008).

    [21] B. Sun, M. P. Edgar, R. Bowman et al. 3D computational imaging with single-pixel detectors. Science, 340, 844(2013).

    [22] R. I. Stantchev, B. Sun, S. M. Hornett et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv., 2, e1600190(2016).

    [23] N. Radwell, K. J. Mitchell, G. M. Gibson et al. Single-pixel infrared and visible microscope. Optica, 1, 285(2014).

    [24] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko et al. Quantum holography. Opt. Express, 9, 498(2001).

    [25] A. F. Abouraddy, P. R. Stone, A. V. Sergienko et al. Entangled-photon imaging of a pure phase object. Phys. Rev. Lett., 93, 213903(2004).

    [26] R. Borghi, F. Gori, M. Santarsiero. Phase and amplitude retrieval in ghost diffraction from field-correlation measurements. Phys. Rev. Lett., 96, 183901(2006).

    [27] S.-H. Zhang, L. Gao, J. Xiong et al. Spatial interference: from coherent to incoherent. Phys. Rev. Lett., 102, 073904(2009).

    [28] W. Gong, S. Han. Phase-retrieval ghost imaging of complex-valued objects. Phys. Rev. A, 82, 023828(2010).

    [29] X.-B. Song, D.-Q. Xu, H.-B. Wang et al. Experimental observation of one-dimensional quantum holographic imaging. Appl. Phys. Lett., 103, 131111(2013).

    [30] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739(2013).

    [31] T. Aidukas, P. C. Konda, A. R. Harvey et al. Phase and amplitude imaging with quantum correlations through Fourier ptychography. Sci. Rep., 9, 10445(2019).

    [32] H. Defienne, B. Ndagano, A. Lyons et al. Polarization entanglement-enabled quantum holography. Nat. Phys., 17, 591(2021).

    [33] R. Chrapkiewicz, M. Jachura, K. Banaszek et al. Hologram of a single photon. Nat. Photonics, 10, 576(2016).

    [34] R. S. Aspden, D. S. Tasca, R. W. Boyd et al. Epr-based ghost imaging using a single-photon-sensitive camera. New J. Phys., 15, 073032(2013).

    [35] K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd. Two-color ghost imaging. Phys. Rev. A, 79, 033808(2009).

    [36] S. Karmakar, Y. Shih. Observation of two-color ghost imaging. Proc. SPIE, 7702, 38(2010).

    [37] W. Zhang, X. Qiu, D. Zhang et al. Visualizing the hardy’s paradox using hyper-entanglement-assisted ghost imaging. Laser Photonics Rev., 17, 2200865(2023).

    [38] X. Qiu, H. Guo, L. Chen. Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion. Nat. Commun., 14, 8244(2023).

    [39] N. Bornman, M. Agnew, F. Zhu et al. Ghost imaging using entanglement-swapped photons. npj Quantum Inf., 5, 63(2019).

    [40] X. Qiu, D. Zhang, T. Ma et al. Parallel ghost imaging. Adv. Quantum Technol., 3, 2000073(2020).

    [41] R. S. Aspden, P. A. Morris, R. He et al. Heralded phase-contrast imaging using an orbital angular momentum phase-filter. J. Opt., 18, 055204(2016).

    [42] X. Qiu, D. Zhang, W. Zhang et al. Structured-pump-enabled quantum pattern recognition. Phys. Rev. Lett., 122, 123901(2019).

    [43] D. Zhang, Y.-H. Zhai, L.-A. Wu et al. Correlated two-photon imaging with true thermal light. Opt. Lett., 30, 2354(2005).

    [44] J. C. Howell, R. S. Bennink, S. J. Bentley et al. Realization of the einstein-podolsky-rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett., 92, 210403(2004).

    [45] K. Wang, D.-Z. Cao. Subwavelength coincidence interference with classical thermal light. Phys. Rev. A, 70, 041801(2004).

    [46] D.-Z. Cao, J. Xiong, S.-H. Zhang et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light. Appl. Phys. Lett., 92, 201102(2008).

    [47] D.-Z. Cao, J. Xiong, K. Wang. Geometrical optics in correlated imaging systems. Phys. Rev. A, 71, 013801(2005).

    [48] G. Scarcelli, V. Berardi, Y. Shih. Phase-conjugate mirror via two-photon thermal light imaging. Appl. Phys. Lett., 88, 061106(2006).

    [49] Y.-H. Zhai, X.-H. Chen, D. Zhang et al. Two-photon interference with true thermal light. Phys. Rev. A, 72, 043805(2005).

    [50] J. Xiong, D.-Z. Cao, F. Huang et al. Experimental observation of classical subwavelength interference with a pseudothermal light source. Phys. Rev. Lett., 94, 173601(2005).

    [51] X.-B. Song, H.-B. Wang, J. Xiong et al. Experimental observation of quantum Talbot effects. Phys. Rev. Lett., 107, 033902(2011).

    [52] M. Zhang, Q. Wei, X. Shen et al. Lensless fourier-transform ghost imaging with classical incoherent light. Phys. Rev. A, 75, 021803(2007).

    [53] A.-X. Zhang, Y.-H. He, L.-A. Wu et al. Tabletop X-ray ghost imaging with ultra-low radiation. Optica, 5, 374(2018).

    [54] D. Pelliccia, A. Rack, M. Scheel et al. Experimental X-ray ghost imaging. Phys. Rev. Lett., 117, 113902(2016).

    [55] P. Marquet, B. Rappaz, P. J. Magistretti et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett., 30, 468(2005).

    [56] R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27(1956).

    [57] J. F. Heanue, M. C. Bashaw, L. Hesselink. Volume holographic storage and retrieval of digital data. Science, 265, 749(1994).

    [58] M. Servin, J. L. Marroquin, F. J. Cuevas. Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl. Opt., 36, 4540(1997).

    [59] T.-C. Poon. Digital Holography and Three-Dimensional Display: Principles and Applications(2006).

    [60] R. V. Vinu, Z. Chen, R. K. Singh et al. Ghost diffraction holographic microscopy. Optica, 7, 1697(2020).

    [61] D. Zia, N. Dehghan, A. D’Errico et al. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photonics, 17, 1009(2023).

    [62] G. Ortolano, A. Paniate, P. Boucher et al. Quantum enhanced non-interferometric quantitative phase imaging. Light Sci. Appl., 12, 171(2023).

    [63] R. Camphausen, Á. Cuevas, L. Duempelmann et al. A quantum-enhanced wide-field phase imager. Sci. Adv., 7, eabj2155(2021).

    [64] L.-J. Kong, Y. Sun, F. Zhang et al. High-dimensional entanglement-enabled holography. Phys. Rev. Lett., 130, 053602(2023).

    [65] S. Töpfer, M. G. Basset, J. Fuenzalida et al. Quantum holography with undetected light. Sci. Adv., 8, eabl4301(2022).

    [66] M. H. Rubin, Y. Shih. Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion. Phys. Rev. A, 78, 033836(2008).

    Peiming Li, Xiaojin Chen, Xiaodong Qiu, Binglin Chen, Lixiang Chen, Baoqing Sun, "Ghost imaging, development, and recent advances [Invited]," Chin. Opt. Lett. 22, 112701 (2024)
    Download Citation