[1] R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Near-ultraviolet evanescent-wave absorption sensor based on a multimode optical fiber,” Analytical Chemistry, 1998, 70(8): 1639–1645.
[2] L. Xu, J. C. Fanuy, K. SSoni, and S. Q. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Optics Letters, 2004, 29(11): 1191–1193.
[3] K. A. Remley and A. Weisshaar, “Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensors,” Optics Letters, 1996, 21(16): 1241–1243.
[4] K. Tiefenthaler and W. Lukoz, “Sensitivity of grating couples as integrated optical chemical sensors,” Journal of the Optical Society of America B, 1989, 6(2): 209–220.
[5] D. K. Qing and I. Yamaguchi, “Analysis of the sensitivity of optical waveguide chemical sensor for TM modes by the group-index method,” Journal of the Optical Society of America B, 1999, 16(9): 1359–1369.
[6] W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sensors & Actuators B: Chemical, 1995, 29(1): 37–50.
[7] R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sensors & Actuators B: Chemical, 1997, 38(1–3): 13–28.
[8] H. J. El-Khozondar, R. J. El-Khozondar, and S. Zouhdi, “Tunable MTMs consists of a single-walled nanotube thin film waveguide covered by nonlinear cladding,” Applied Physics A, 2015, 119(2): 451–453.
[9] H. J. El-Khozondar, M. Müller, R. J. El-Khozondar, M. M. Shabat, and A. W. Koch, “Sensitivity of double-negative metamaterial optical sensor,” International Journal of Pure and Applied Sciences and Technology (IJPAST), 2012, 11(2): 29–35.
[10] R. J. El-Khozondar, H. J. El-Khozondar, and M. M. Shabat, “Surface wave propagation in ferroelectric/MTMS interface,” Integrated Ferroelectrics, 2011, 130(1): 50–57.
[11] H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Temperature dependence of optical nonlinear waveguide sensor on thermal stress effect,” Islamic University Journal for Natural Science and Engineering, 2008, 16(2): 29–40.
[12] H. J. El-Khozondar and R. J. El-Khozondar, “Temperature sensitivity enhancement of nonlinear optical channel waveguide sensors using thermal-stress effect,” Islamic University Journal for Natural Science and Engineering, 2008, 16(2): 15–27.
[13] H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Double-negative metamaterial optical waveguide behavior subjected to stress,” Islamic University Journal for Natural Science and Engineering, 2008, 16(1): 9–20.
[14] H. J. El-Khozondar, R. J. El-Khozondar, M. M. Shabat, and A. W. Koch, “Stress effect on optical nonlinear waveguide sensor,” Journal of Optical Communications, 2007, 28(3): 175–179.
[15] R. J. El-Khozondar, H. J. El-Khozondar, and M. M. Shabat, “Enhancing sensor sensitivity using graphene-MTM interface,” American Journal of Nano Research and Applications, 2017, 4(5): 43–46.
[16] H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Metamaterial-dielectric photonics crystal waveguide structure,” Optics, 2015, 4(1–2): 1–4.
[17] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., “Two-dimensional atomic crystals,” Proceedings of the National Academy of Sciences of USA, 2005, 102(30): 10451–10453.
[18] L. Chen, Z. S. Ma, and C. Zhang, “Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene,” Applied Physics Letters, 2010, 96(2): 023107–1–023107–3.
[19] C. G. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 2008, 312(5887): 385–388.
[20] A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Applied Physics Letters, 2009, 95(7): 072101-1–072101-3.
[21] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials, 2007, 6(9): 652–655.
[22] Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Nonlinear TE-polarized surface polaritons on graphene,” Physical Review B, 2014, 89: 035406-1–035406-6.
[23] H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Dispersion characteristics of graphene surface plasmon four layers waveguide,” IUG Journal of Natural Studies (IUGNES) Special Issue, 2017, 25(2): 263–266.
[24] H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Dispersion characteristics and sensitivity properties of graphene surface plasmon sensor,” Sensor Letters, 2017, 15(3): 249–252.
[25] R. J. El-Khozondar, H. J. El-Khozondar, and M. M. Shabat, “Enhancing sensor sensitivity using graphene-MTM interface,” American Journal of Nano Research and Applications, 2016, 4(5): 43–46.
[26] Y. X. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Nonlinear TE-polarized SPPs on a graphene cladded parallel plate waveguide,” Journal of Applied Physics, 2017, 121(10): 103103-1– 103103-7.
[27] Y. Wu, L. Jiang, H. Xu, X. Dai, Y. Xiang, and D. Fan, “Hybrid nonlinear surface-phonon-plasmon- polaritons at the interface of nonlinear medium and graphene-covered hexagonal boron nitride crystal,” Optics Express, 2016, 24(3): 2109–2124.