[1] Khan Y, Thielens A, Muin S et al. A new frontier of printed electronics: flexible hybrid electronics[J]. Advanced Materials, 32, 1905279(2020).
[2] Mohammed M G, Kramer R. All-printed flexible and stretchable electronics[J]. Advanced Materials, 29, 1604965(2017).
[3] Wang P P, Hu M M, Wang H et al. The evolution of flexible electronics: from nature, beyond nature, and to nature[J]. Advanced Science, 7, 2001116(2020).
[4] He J Q, Lu C H, Jiang H B et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 597, 57-63(2021).
[5] Mo F N, Liang G J, Huang Z D et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties[J]. Advanced Materials, 32, 1902151(2020).
[6] Chen J, Huang Y, Zhang N N et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy[J]. Nature Energy, 1, 16138(2016).
[7] Dong B, Hu J, Xiao X Y et al. High-efficiency fiber-shaped perovskite solar cell by vapor-assisted deposition with a record efficiency of 10.79%[J]. Advanced Materials Technologies, 4, 1900131(2019).
[8] Meng K Y, Chen J, Li X S et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure[J]. Advanced Functional Materials, 29, 1806388(2019).
[9] Zhao T M, Fu Y M, Sun C X et al. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators[J]. Biosensors and Bioelectronics, 205, 114115(2022).
[10] Wei X F, Zhang W, Fan X. Nonprinted IC textiles for wearable electronics[J]. Accounts of Materials Research, 3, 1201-1205(2022).
[11] Zhang G H, Hou S C, Zhang H et al. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode[J]. Advanced Materials, 27, 2400-2405(2015).
[12] Cao J, Wu B H, Chen R H et al. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation[J]. Advanced Materials, 30, 1705596(2018).
[13] Li Z X, Wang P, Ma C et al. Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells[J]. Journal of the American Chemical Society, 143, 2593-2600(2021).
[14] Sun L Q, Wang D K, Fang D et al. CdSe quantum dot modified ZnO micro-wire fast response ultraviolet photoelectric detector[J]. Chinese Journal of Lasers, 49, 1303001(2022).
[15] Xing X Y, Zheng K B, Xu H H et al. Synthesis and electrical properties of ZnO nanowires[J]. Micron, 37, 370-373(2006).
[16] Kaady E, Alhussein A, Bechelany M et al. Al2O3-ZnO atomic layer deposited nanolaminates for improving mechanical and corrosion properties of sputtered CrN coatings[J]. Thin Solid Films, 759, 139476(2022).
[17] Yamaguchi N, Kuroyama T, Okuhara Y et al. Properties of Al doped zinc oxide films prepared by electron beam-PVD[J]. Journal of the Ceramic Society of Japan, 121, 981-983(2013).
[18] Shang S G, Gao L, Ren W et al. Fabrication of ZnO nanowalls by electrochemical deposition and ultraviolet detection performance[J]. Acta Optica Sinica, 41, 0716001(2021).
[19] Hu H F, Xu Y T, Li L et al. CuCr1-xMgxO2/ZnO nanorod ultraviolet photoelectric detector prepared by sol-gel method[J]. Acta Optica Sinica, 42, 1423001(2022).
[20] Wang M D, Xing C C, Cao K et al. Alignment-controlled hydrothermal growth of well-aligned ZnO nanorod arrays[J]. Journal of Physics and Chemistry of Solids, 75, 808-817(2014).
[21] Zhu S B, Shan L M, Tian X et al. Hydrothermal synthesis of oriented ZnO nanorod-nanosheets hierarchical architecture on zinc foil as flexible photoanodes for dye-sensitized solar cells[J]. Ceramics International, 40, 11663-11670(2014).
[22] Rai P, Yu Y T. Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application[J]. Sensors and Actuators B: Chemical, 173, 58-65(2012).
[23] Liang H X, Hu Y C, Tao Y R et al. Existence of ligands within sol-gel-derived ZnO films and their effect on perovskite solar cells[J]. ACS Applied Materials & Interfaces, 11, 43116-43121(2019).
[24] Tao P, Guo W W, Du J et al. Continuous wet-process growth of ZnO nanoarrays for wire-shaped photoanode of dye-sensitized solar cell[J]. Journal of Colloid and Interface Science, 478, 172-180(2016).
[25] Li Z S, Liu X H, Zhou M et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine[J]. Journal of Hazardous Materials, 415, 125757(2021).
[26] Liu B, Wang M Z, Chen M D et al. Effect of TC(002) on the output current of a ZnO thin-film nanogenerator and a new piezoelectricity mechanism at the atomic level[J]. ACS Applied Materials & Interfaces, 11, 12656-12665(2019).
[27] Chen K, Tang W J, Chen Y et al. A facile solution processed ZnO@ZnS core-shell nanorods arrays for high-efficiency perovskite solar cells with boosted stability[J]. Journal of Energy Chemistry, 61, 553-560(2021).
[28] Chen H N, Zhu L Q, Liu H C et al. Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells[J]. Nanotechnology, 23, 075402(2012).