• Infrared and Laser Engineering
  • Vol. 47, Issue 10, 1003003 (2018)
Zhang Yi1,2, Zhang Yu1,2, Yang Cheng′ao1,2, Xie Shengwen1,2..., Shao Fuhui1,2, Shang Jinming1,2, Huang Shushan1,2, Yuan Ye1,2, Xu Yingqiang1,2, Ni Haiqiao1,2 and Niu Zhichuan1,2|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1003003 Cite this Article
    Zhang Yi, Zhang Yu, Yang Cheng′ao, Xie Shengwen, Shao Fuhui, Shang Jinming, Huang Shushan, Yuan Ye, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 3-4 μm antimonide interband cascade laser(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003003 Copy Citation Text show less
    References

    [1] Grau M, Lin C, Dier O, et al. Room-temperature operation of 3.26 μm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers [J]. Appl Phys Lett, 2005, 87(24): 241104.

    [2] Leon Shterengas, Rui Liang, Gela Kipshidze, et al. Type-I quantum well cascade diode lasers emitting near 3 μm [J]. Appl Phys Lett, 2013, 103(12): 121108.

    [3] Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3 μm wavelength range[J]. Semiconductor Lasers and Laser Dynamics Vi, 2014, 9134: 2052115.

    [4] Yang R Q, Pei S S J. Novel type-II quantum cascade lasers [J]. J Appl Phys, 1996, 79(11): 8197-8203.

    [5] Meyer J R, Ho_man C A, Bartoli F J, et al. Type-II quantum-well lasers for the mid-wavelength infrared [J]. Appl Phys Lett, 1995, 67(6): 757-759.

    [6] Thompson G H B, Kirkby P. (GaAl)As lasers with a heterostructure for optical confinement and additional heterojunctions for extreme carrier confinement[J]. IEEE J Quantum Electron, 1973, 9(2): 311-318.

    [7] Sirtori C, Faist J, Capasso F, et al. Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 μm wavelength [J]. Appl Phys Lett, 1995, 66(24): 3242-3244.

    [8] Yang R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlatticeand Microdevices, 1995, 17(1): 1017.

    [9] Lin Chih-Hsiang, Yang Q, Zhang D, et al. Type II interband quantum cascade laser at 3.8 μm [J]. Electronics Letters, 2015, 33(7): 598-599.

    [10] Yang R Q, Bruno J D, Bradshaw J L, et al. High-power interband cascade lasers with quantum efficiency >450%[J]. Electronics Letters, 1999, 35(15): 1254-1255.

    [11] Bradshaw J L, Yang R Q, Bruno J D, et al. High-efficiency interband cascade lasers with peak power exceeding 4 W/facet[J]. Appl Phys Lett, 1999, 75(16): 2362-2364.

    [12] Bradshaw J L, Bruno J D, Pham J T, et al. Continuous wave operation of type-II interband cascade lasers[J].IEEE Proc Optoelectron, 2000, 147: 177-180.

    [13] Bruno J D, Bradshaw J L, Yang R Q, et al. Low-threshold interband cascade lasers with power efficiency exceeding 9%[J]. Appl Phys Lett, 2000, 76(22): 3167-3169.

    [14] Bradshaw J L, Pham J T, Yang R Q, et al. Enhanced CW performance of the interband cascade laser using improved device fabrication [J]. IEEE J Select Top Quantum Electron, 2001, 37(2): 102-105.

    [15] Yang R Q, Bradshaw J L, Bruno J D, et al. Power, efficiency, and thermal characteristics of type-II interband cascade lasers [J]. IEEE J Select Top Quantum Elctron, 2001, 37(2): 282-289.

    [16] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-II interband cascade laser[J].Appl Phys Lett, 2002, 81(3): 397-399.

    [17] Yang R Q, Hill C J, Christensen L E, et al. Mid-IR type-II interband cascade lasers and their applications[C]//Proc of SPIE, 2005, 5624: 413-422.

    [18] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Appl Phys Lett, 2005, 87(15): 151109.

    [19] Hill C J, Yang R Q. MBE growth optimization of Sb-based interband cascade lasers [J]. J Cryst Growth, 2005, 278(1): 167-172.

    [20] Mansour K, Qiu Y, Hill C J, et al. Mid-infrared interband cascade lasers at thermoelectric cooler temperatures[J]. Electron Lett, 2006, 42(18): 1034-1035.

    [21] Yang R Q, Hill C J, Mansour K, et al. Distributed feedback mid-IR interband cascade lasers at thermoelectric cooler temperatures [J]. IEEE J Select Top Quantum Elctron, 2007, 13(5): 1074-1078.

    [22] Kim M, Canedy C L, Bewley W W, et al. Interband cascade laser emitting at 3.75 in continuous wave above room temperature [J]. Appl Phys Lett, 2008, 92(19): 191110.

    [23] Vurgaftman I, Bewley W W, Canedy C L, et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption [J]. Nature Communications, 2011, 2(1): 1585-1595.

    [24] Robert Weih, Martin Kamp, Sven Hofling, et al. Interband cascade lasers with room temperature threshold current densities below 100 A/cm2 [J]. Appl Phys Lett, 2013, 102(23): 231123.

    [25] Bewley W W, Kim C S, Canedy C L, et al. High-power CW performance of 7-stage interband cascade lasers [J]. Opt Express, 2014, 22(7): 7702-7710.

    Zhang Yi, Zhang Yu, Yang Cheng′ao, Xie Shengwen, Shao Fuhui, Shang Jinming, Huang Shushan, Yuan Ye, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 3-4 μm antimonide interband cascade laser(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003003
    Download Citation