[1] Cheng B T, Dai Q, Xie X M et al. Research progress of single-photon detectors[J]. Laser Technology, 46, 601-609(2022).
[2] Li H X, Zhang Q, Liu G Y et al. Metal-semiconductor-metal photodetectors based on strained germanium[J]. Semiconductor Technology, 48, 747-754(2023).
[3] Zhu X T, Lin F Y, Zhang Z H et al. Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure[J]. Nano Letters, 20, 2654-2659(2020).
[4] Zhou H, Zhang L, Tong J C et al. Surface plasmon enhanced GeSn photodetectors operating at 2 µm[J]. Optics Express, 29, 8498-8509(2021).
[5] Wang J, He M Y, Han X W et al. Localized field enhanced graphene-based near-infrared photodetector (invited)[J]. Infrared and Laser Engineering, 51, 20210823(2022).
[6] Wu P P, Fu Y Q, Yang J. Graphene photodetectors based on surface plasmons[J]. Laser & Optoelectronics Progress, 58, 0700002(2021).
[7] Takemura K. Surface plasmon resonance (SPR)-and localized SPR (LSPR)-based virus sensing systems: optical vibration of nano- and micro-metallic materials for the development of next-generation virus detection technology[J]. Biosensors, 11, 250(2021).
[8] Jian C C, Zhang J Q, He W M et al. Au-Al intermetallic compounds: a series of more efficient LSPR materials for hot carriers-based applications than noble metal Au[J]. Nano Energy, 82, 105763(2021).
[9] Oumekloul Z, Lahlali S, Mir A et al. Evolution of LSPR of gold nanowire chain embedded in dielectric multilayers[J]. Optical Materials, 86, 343-351(2018).
[10] Wang L M, Zhang Y C, Wang B et al. High-performance infrared Ge-based plasmonic photodetector enhanced by dual absorption mechanism[J]. APL Photonics, 5, 096104(2020).
[11] Wu C Y, Zeng B, Zhou K N et al. Grating perovskite enhanced polarization-sensitive GaAs-based photodetector[J]. IEEE Transactions on Electron Devices, 69, 2469-2473(2022).
[12] Yin L W, Lang Y W, Liu W J. Near-infrared polarization-insensitive photodetector based on plasmonic cavity enhanced light absorption[J]. Journal of Guangdong University of Technology, 41, 133-138(2024).
[13] Cheng J B, Tang D X, Xie Y et al. Localized surface plasmon resonance enhanced MoS2 photodetector[J]. Laser Technology, 48, 867-875(2024).
[14] Li J L, Sun K X. Light absorption characteristics of a graphene photodetector based on nano-metal modification[J]. Laser & Optoelectronics Progress, 59, 2124003(2022).
[15] Miah M I. Size- and temperature-control optical direct/indirect band tuning in layered compounds: band gap engineering[J]. Optical and Quantum Electronics, 53, 618(2021).
[16] Chu X F, Huang L M, Zhang Q et al. Characterization and analysis of indium tin oxide (ITO) and fluotin oxide (FTO) transparent conductive films[J]. Journal of Synthetic Crystals, 53, 848-854(2024).
[17] Burford N, El-Shenawee M. Computational modeling of plasmonic thin film terahertz photoconductive antennas[J]. Journal of the Optical Society of America B, 33, 748-759(2016).
[18] Bashirpour M, Ghorbani S, Kolahdouz M et al. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure[J]. RSC Advances, 7, 53010-53017(2017).
[19] Lu S Q, Chao X G, Chen X F et al. TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure[J]. Acta Optica Sinica, 35, 0116003(2015).
[20] Su J, Sun C, Wang X Q. A metallic dispersion model for numerical simulation[J]. Journal of Optoelectronics·Laser, 24, 408-414(2013).
[21] Xu Q L, Sun K X. Light absorption performance of graphene photodetector based on localized surface plasmon resonance effect[J]. Laser & Optoelectronics Progress, 61, 0504001(2024).
[22] Vinogradov A P, Dorofeenko A V, Pukhov A A et al. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam[J]. Physical Review B, 97, 235407(2018).
[23] Zhao X W, Moeen M, Toprak M S et al. Design impact on the performance of Ge PIN photodetectors[J]. Journal of Materials Science: Materials in Electronics, 31, 18-25(2020).
[24] Sun K X, Li J L, Chen Z F et al. High-performance van der Waals heterotunneling device based on PdSe2/InSe[J]. Laser & Optoelectronics Progress, 60, 1316019(2023).
[25] Wang Y C. Microstructure silicon-based near-infrared materials and its optics, photoelectric characteristics research[D](2017).