[1] Browning N D, Chisholm M F, Pennycook S J. Atomic-resolution chemical analysis using a scanning transmission electron microscope[J]. Nature, 366, 143-146(1993).
[2] Muller D A, Kourkoutis L F, Murfitt M et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy[J]. Science, 319, 1073-1076(2008).
[3] Mundy J A, Mao Q Y, Brooks C M et al. Atomic-resolution chemical imaging of oxygen local bonding environments by electron energy loss spectroscopy[J]. Applied Physics Letters, 101, 042907(2012).
[4] Huisken J, Swoger J, Del Bene F et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 305, 1007-1009(2004).
[5] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).
[6] Li Z W, Zhang Q R, Chou S W et al. Fast widefield imaging of neuronal structure and function with optical sectioning in vivo[J]. Science Advances, 6, eaaz3870(2020).
[7] Supekar O D, Sias A, Hansen S R et al. Miniature structured illumination microscope for in vivo 3D imaging of brain structures with optical sectioning[J]. Biomedical Optics Express, 13, 2530-2541(2022).
[8] Hell S W. Far-field optical nanoscopy[J]. Science, 316, 1153-1158(2007).
[9] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).
[10] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[11] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[12] Moerner W E. New directions in single-molecule imaging and analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 12596-12602(2007).
[13] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[14] Bates M, Huang B, Dempsey G T et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 317, 1749-1753(2007).
[15] Jones S A, Shim S H, He J et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 8, 499-508(2011).
[16] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 24, 954-956(1999).
[17] Willig K I, Rizzoli S O, Westphal V et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 440, 935-939(2006).
[18] Hofmann M, Eggeling C, Jakobs S et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 17565-17569(2005).
[19] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).
[20] Sheppard C J R. Structured illumination microscopy and image scanning microscopy: a review and comparison of imaging properties[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 379, 20200154(2021).
[21] Samanta K, Joseph J. An overview of structured illumination microscopy: recent advances and perspectives[J]. Journal of Optics, 23, 123002(2021).
[22] Liu G X, Xu N, Yang H D et al. Miniaturized structured illumination microscopy with diffractive optics[J]. Photonics Research, 10, 1317-1324(2022).
[23] Dan D, Wang Z J, Zhou X et al. Rapid image reconstruction of structured illumination microscopy directly in the spatial domain[J]. IEEE Photonics Journal, 13, 3900411(2021).
[24] Cheng X, Li J, Dai Q et al. Fast and lightweight network for single frame structured illumination microscopy super-resolution[J]. IEEE Transactions on Instrumentation and Measurement, 71, 5007711(2022).
[25] Sun Y L, Zhu H F, Yin L et al. Fluorescence interference structured illumination microscopy for 3D morphology imaging with high axial resolution[J]. Advanced Photonics, 5, 056007(2023).
[26] Carlsson K, Danielsson P E, Lenz R et al. Three-dimensional microscopy using a confocal laser scanning microscope[J]. Optics Letters, 10, 53-55(1985).
[27] Keller P J, Schmidt A D, Santella A et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy[J]. Nature Methods, 7, 637-642(2010).
[28] Olarte O E, Licea-Rodriguez J, Palero J A et al. Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles[J]. Biomedical Optics Express, 3, 1492-1505(2012).
[29] Centonze V E, White J G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging[J]. Biophysical Journal, 75, 2015-2024(1998).
[30] Neil M A, Juskaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope[J]. Optics Letters, 22, 1905-1907(1997).
[31] Chai C C, Chen C, Liu X J et al. Deep learning based one-shot optically-sectioned structured illumination microscopy for surface measurement[J]. Optics Express, 29, 4010-4021(2021).
[32] Fu Z Q, Chen J L, Liu G et al. Single-shot optical sectioning microscopy based on structured illumination[J]. Optics Letters, 47, 814-817(2022).
[33] Li X S, Wu Y C, Su Y J et al. Three-dimensional structured illumination microscopy with enhanced axial resolution[J]. Nature Biotechnology, 41, 1307-1319(2023).
[34] Ward E N, Hecker L, Christensen C N et al. Machine learning assisted interferometric structured illumination microscopy for dynamic biological imaging[J]. Nature Communications, 13, 7836(2022).
[35] Classen A, von Zanthier J, Agarwal G S. Analysis of super-resolution via 3D structured illumination intensity correlation microscopy[J]. Optics Express, 26, 27492-27503(2018).
[36] Jin X, Ding X M, Tan J B et al. Structured illumination imaging without grating rotation based on mirror operation on 1D Fourier spectrum[J]. Optics Express, 27, 2016-2028(2019).
[37] Wei H J, Hu S, Tang Y et al. Efficient profilometry using tilted grating scanning structured illumination microscopy[J]. IEEE Photonics Technology Letters, 32, 522-525(2020).
[38] Jin X, Ding X M, Tan J B et al. Tilt illumination for structured illumination imaging[J]. Optical and Quantum Electronics, 53, 516(2021).
[39] Kner P, Chhun B B, Griffis E R et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 6, 339-342(2009).
[40] Dan D, Lei M, Yao B L et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. Scientific Reports, 3, 1116(2013).
[41] Dan D, Gao P, Zhao T Y et al. Super-resolution and optical sectioning integrated structured illumination microscopy[J]. Journal of Physics D: Applied Physics, 54, 074004(2021).
[42] York A G, Parekh S H, Nogare D D et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 9, 749-754(2012).
[43] Chen J L, Fu Z Q, Chen B X et al. Fast 3D super-resolution imaging using a digital micromirror device and binary holography[J]. Journal of Biomedical Optics, 26, 116502(2021).
[44] Guo Y T, Li D, Zhang S W et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 175, 1430-1442(2018).
[45] Zheng J J, Fang X, Wen K et al. Large-field lattice structured illumination microscopy[J]. Optics Express, 30, 27951-27966(2022).
[46] Markwirth A, Lachetta M, Mönkemöller V et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction[J]. Nature Communications, 10, 4315(2019).
[47] Monneret S, Rauzi M, Lenne P F. Highly flexible whole-field sectioning microscope with liquid-crystal light modulator[J]. Journal of Optics A: Pure and Applied Optics, 8, S461-S466(2006).
[48] Wen K, Fang X, Ma Y et al. Large-field structured illumination microscopy based on 2D grating and a spatial light modulator[J]. Optics Letters, 47, 2666-2669(2022).
[49] Dan D, Yao B L, Lei M. Structured illumination microscopy for super-resolution and optical sectioning[J]. Chinese Science Bulletin, 59, 1291-1307(2014).
[50] Zhang C S, Zhang W, Yu B et al. Enhanced multifocal structured illumination microscopy with desired optical sectioning capability and lateral resolution improvement[J]. Optics Express, 28, 37946-37957(2020).
[51] Ayoub A B, Psaltis D. High speed, complex wavefront shaping using the digital micro-mirror device[J]. Scientific Reports, 11, 18837(2021).
[52] Paul T C, Johnson K A, Hagen G M. Super-resolution imaging of neuronal structures with structured illumination microscopy[J]. Bioengineering, 10, 1081(2023).
[53] Chen Z Q, He H Z, Ai Q et al. Rapid reconstruction algorithm for multifocal structured illumination microscopy[J]. Optics Communications, 546, 129807(2023).
[54] Cao R J, Li Y N, Chen X et al. Open-3DSIM: an open-source three-dimensional structured illumination microscopy reconstruction platform[J]. Nature Methods, 20, 1183-1186(2023).
[55] He Y, Yao Y H, He Y L et al. Untrained neural network enhances the resolution of structured illumination microscopy under strong background and noise levels[J]. Advanced Photonics Nexus, 2, 046005(2023).
[56] Chen C C, Wu J S, Yu L P et al. Degree-of-spatial-coherence laser scanning confocal fluorescence microscope[J]. Optics Communications, 518, 128315(2022).
[57] Jennings C M, King J B, Parekh S H. Low-cost, minimalistic line-scanning confocal microscopy[J]. Optics Letters, 47, 4191-4194(2022).
[58] Li D Z, Zhou W S, Qiu Z M et al. Adaptive structured illumination optical-sectioning microscopy based on the prior knowledge of sample structure[J]. Optics and Lasers in Engineering, 172, 107851(2024).
[59] Lal A, Shan C Y, Xi P. Structured illumination microscopy image reconstruction algorithm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 6803414(2016).
[60] Müller M, Mönkemöller V, Hennig S et al. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ[J]. Nature Communications, 7, 10980(2016).
[61] Wen G, Li S M, Wang L B et al. High-fidelity structured illumination microscopy by point-spread-function engineering[J]. Light, Science & Applications, 10, 70(2021).
[62] Luo Z W, Zang G D, Wu G et al. High-fidelity SIM reconstruction-based super-resolution quantitative FRET imaging[J]. Advanced Photonics Nexus, 2, 056008(2023).
[63] Lal A, Shan C Y, Zhao K et al. A frequency domain SIM reconstruction algorithm using reduced number of images[J]. IEEE Transactions on Image Processing, 27, 4555-4570(2018).
[64] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).
[65] Zhou X, Lei M, Dan D et al. Fast spatial domain reconstruction for structured illumination microscopy[J]. Proceedings of SPIE, 10711, 107110N(2018).
[66] Tu S J, Liu Q L, Liu X et al. Fast reconstruction algorithm for structured illumination microscopy[J]. Optics Letters, 45, 1567-1570(2020).
[67] Liu T, Liu J H, Li D et al. Improving reconstruction of structured illumination microscopy images via dual-domain learning[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 7700712(2023).
[68] Wen G, Li S M, Liang Y et al. Spectrum-optimized direct image reconstruction of super-resolution structured illumination microscopy[J]. PhotoniX, 4, 19(2023).
[69] Wang Z J, Zhao T Y, Hao H W et al. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy[J]. Advanced Photonics, 4, 026003(2022).
[70] Zhao T Y, Wang Z J, Cai Y A et al. Fast single-layer reconstruction for three-dimensional structured illumination microscopy[J]. Optics and Lasers in Engineering, 167, 107606(2023).
[71] Li X Y, Tu S J, Sun Y L et al. Estimation-free spatial-domain image reconstruction of structured illumination microscopy[J]. Journal of Innovative Optical Health Sciences, 2350021(2023).
[72] O’Holleran K, Shaw M. Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy[J]. Biomedical Optics Express, 5, 2580-2590(2014).
[73] Chang B J, Chou L J, Chang Y C et al. Isotropic image in structured illumination microscopy patterned with a spatial light modulator[J]. Optics Express, 17, 14710-14721(2009).
[74] Feng L, Wang X L, Sun X L et al. Efficient multifocal structured illumination microscopy utilizing a spatial light modulator[J]. Applied Sciences, 10, 4396(2020).
[75] Chen H K, Wei S B, Wu X J et al. Improved Interference configuration for structured illumination microscopy[J]. Optics Communications, 384, 59-64(2017).
[76] Li Y N, Cao R J, Ren W et al. High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy[J]. Advanced Photonics Nexus, 3, 016001(2023).
[77] Sandmeyer A, Lachetta M, Sandmeyer H et al. Cost-effective live cell structured illumination microscopy with video-rate imaging[J]. ACS Photonics, 8, 1639-1648(2021).
[78] Perinchery S M, Shinde A, Matham M V. Microscopy using randomized speckle illumination[J]. Proceedings of SPIE, 10449, 104490H(2017).
[79] Lee Y U, Zhao J X, Ma Q et al. Metamaterial assisted illumination nanoscopy via random super-resolution speckles[J]. Nature Communications, 12, 1559(2021).
[80] Cao R M, Liu F L, Yeh L H et al. Speckle flow structured illumination microscopy for dynamic super-resolution imaging[J]. Proceedings of SPIE, 12390, 1239002(2023).
[81] Yeh L H, Chowdhury S, Repina N A et al. Speckle-structured illumination for 3D phase and fluorescence computational microscopy[J]. Biomedical Optics Express, 10, 3635-3653(2019).
[82] Helle Ø I, Dullo F T, Lahrberg M et al. Structured illumination microscopy using a photonic chip[J]. Nature Photonics, 14, 431-438(2020).
[83] Cragg G E, So P T. Lateral resolution enhancement with standing evanescent waves[J]. Optics Letters, 25, 46-48(2000).
[84] Sentenac A, Belkebir K, Giovannini H et al. Subdiffraction resolution in total internal reflection fluorescence microscopy with a grating substrate[J]. Optics Letters, 33, 255-257(2008).
[85] Roth J, Mehl J, Rohrbach A. Fast TIRF-SIM imaging of dynamic, low-fluorescent biological samples[J]. Biomedical Optics Express, 11, 4008-4026(2020).
[86] Wei F F, Liu Z W. Plasmonic structured illumination microscopy[J]. Nano Letters, 10, 2531-2536(2010).
[87] Bezryadina A, Zhao J X, Xia Y et al. High spatiotemporal resolution imaging with localized plasmonic structured illumination microscopy[J]. ACS Nano, 12, 8248-8254(2018).
[88] Tan Q L, Xu Z J, Zhang D H et al. Polarization-controlled plasmonic structured illumination[J]. Nano Letters, 20, 2602-2608(2020).
[89] Farina A, Di Sieno L, Acconcia G et al. Time-resolved multi-dimensional fluorescence imaging using a Digital-Micromirror-Device and a SPAD-array detector[J]. Proceedings of SPIE, 11243, 112430N(2020).
[90] Agour M, Falldorf C, Bergmann R B. Fast form measurements using a digital micro-mirror device in imaging with partially coherent illumination[J]. Optics Letters, 45, 6154-6157(2020).
[91] Liu J H, Liu J B, Deng Q Y et al. Intensity modulation based optical proximity optimization for the maskless lithography[J]. Optics Express, 28, 548-557(2020).
[92] Zhang Y, Luo J, Xiong Z et al. User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation[J]. Optics Express, 27, 31956-31966(2019).
[93] Xiong Z, Liu H, Chen R H et al. Illumination uniformity improvement in digital micromirror device based scanning photolithography system[J]. Optics Express, 26, 18597-18607(2018).
[94] Han Q, Zhang J Z, Wang J et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared[J]. Applied Optics, 55, 8016-8021(2016).
[95] Han Q, Wang J, Zhang J Z et al. Diffraction analysis for digital micromirror device scene projectors in the long-wave infrared[J]. Optical Engineering, 55, 085105(2016).
[96] Chipegin A A, Petrov N V, Belashov A V. Wavefront complex modulation of semiconductor light sources via digital micromirror device[J]. Proceedings of SPIE, 10834, 108341F(2018).
[97] Lachetta M, Sandmeyer H, Sandmeyer A et al. Simulating digital micromirror devices for patterning coherent excitation light in structured illumination microscopy[J]. Philosophical Transactions of the Royal Society, A: Mathematical, Physical, and Engineering Sciences, 379, 20200147(2021).
[98] Deng M J, Zhao Y Y, Liang Z X et al. Maximizing energy utilization in DMD-based projection lithography[J]. Optics Express, 30, 4692-4705(2022).
[99] Dong X, Shi Y C, Xiao X C et al. Non-paraxial diffraction analysis for developing DMD-based optical systems[J]. Optics Letters, 47, 4758-4761(2022).
[100] Kim J, Kim D Y. Modified blaze condition of a digital micromirror device for structured illumination microscopy[J]. Proceedings of SPIE, 11967, 119670C(2022).
[101] Zhou X, Lei M, Dan D et al. Image recombination transform algorithm for superresolution structured illumination microscopy[J]. Journal of Biomedical Optics, 21, 096009(2016).
[102] Li M Q, Li Y N, Liu W H et al. Structured illumination microscopy using digital micro-mirror device and coherent light source[J]. Applied Physics Letters, 116, 233702(2020).
[103] Wang Z J, Cai Y A, Qian J et al. Hybrid multifocal structured illumination microscopy with enhanced lateral resolution and axial localization capability[J]. Biomedical Optics Express, 11, 3058-3070(2020).
[104] Lachetta M, Wiebusch G, Hübner W et al. Dual color DMD-SIM by temperature-controlled laser wavelength matching[J]. Optics Express, 29, 39696-39708(2021).
[105] Brown P T, Kruithoff R, Seedorf G J et al. Multicolor structured illumination microscopy and quantitative control of polychromatic light with a digital micromirror device[J]. Biomedical Optics Express, 12, 3700-3716(2021).
[106] Li X Y, Xie S Y, Liu W J et al. Speckle-free laser projection structured illumination microscopy based on a digital micromirror device[J]. Optics Express, 29, 43917-43928(2021).
[107] Gong D Z, Cai C F, Strahilevitz E et al. Easily scalable multi-color DMD-based structured illumination microscopy[J]. Optics Letters, 49, 77-80(2024).
[108] Qian J, Lei M, Dan D et al. Full-color structured illumination optical sectioning microscopy[J]. Scientific Reports, 5, 14513(2015).
[109] Qian J, Dang S P, Wang Z J et al. Large-scale 3D imaging of insects with natural color[J]. Optics Express, 27, 4845-4857(2019).
[110] Bai C, Qian J, Dang S P et al. Full-color optically-sectioned imaging by wide-field microscopy via deep-learning[J]. Biomedical Optics Express, 11, 2619-2632(2020).
[111] Wang Z J, Feng K, Yang F et al. Breathing colour into fossils: a tomographic system for reconstructing the soft tissue microstructure of amber inclusions[J]. Optics and Lasers in Engineering, 148, 106775(2022).
[112] Wang M R, Zhao T Y, Wang Z J et al. Three-dimensional natural color imaging based on focus level correlation algorithm using structured illumination microscopy[J]. Frontiers in Physics, 10, 1041577(2022).
[113] Zhou X, Lei M, Dan D et al. Double-exposure optical sectioning structured illumination microscopy based on Hilbert transform reconstruction[J]. PLoS One, 10, e0120892(2015).
[114] Dang S P, Qian J, Peng T et al. Background noise suppression of optical sectioning structured illumination microscopy via Fourier domain reconstruction[J]. Frontiers in Physics, 10, 900686(2022).