• International Journal of Extreme Manufacturing
  • Vol. 6, Issue 6, 62007 (2024)
Huang Wei-Wei, Wang Xiangyuan, Meng Yixuan, Li Linlin..., Zhang Xinquan, Ren Mingjun and Zhu Li-Min|Show fewer author(s)
DOI: 10.1088/2631-7990/ad6ecc Cite this Article
Huang Wei-Wei, Wang Xiangyuan, Meng Yixuan, Li Linlin, Zhang Xinquan, Ren Mingjun, Zhu Li-Min. Design, modeling and control of high-bandwidth nano-positioning stages for ultra-precise measurement and manufacturing: a survey[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62007 Copy Citation Text show less
References

[1] Hansma P K, Schitter G, Fantner G E and Prater C 2006 High-speed atomic force microscopy Science314 601–2

[2] Heath G R, Kots E, Robertson J L, Lansky S, Khelashvili G, Weinstein H and Scheuring S 2021 Localization atomic force microscopy Nature594 385–90

[3] Zhu L L, Li Z X, Fang F Z, Huang S Y and Zhang X D 2018 Review on fast tool servo machining of optical freeform surfaces Int. J. Adv. Manuf. Technol.95 2071–92

[4] Li C X, Gu G Y, Yang M J and Zhu L M 2013 Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage Rev. Sci. Instrum.84 125111

[5] Brinksmeier E, Karpuschewski B, Yan J W and Schnemann L 2020 Manufacturing of multiscale structured surfaces CIRP Ann.69 717–39

[6] Li X C, Zhu H Y, Ma J, Teo T J, Teo C S, Tomizuka M and Lee T H 2020 Data-driven multiobjective controller optimization for a magnetically levitated nanopositioning system IEEE/ASME Trans. Mechatronics25 1961–70

[7] Fiaz H S, Settle C R and Hoshino K 2016 Metal additive manufacturing for microelectromechanical systems: titanium alloy (Ti-6Al-4V)-based nanopositioning flexure fabricated by electron beam melting Sens. Actuators A 249 284–93

[8] Kodera N et al 2021 Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy Nat. Nanotechnol.16 181–9

[9] Zuttion F, Colom A, Matile S, Farago D, Pompeo F, Kokavecz J, Galinier A, Sturgis J and Casuso I 2020 High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action Nat. Commun.11 6312

[10] Tseng A A 2011 Advancements and challenges in development of atomic force microscopy for nanofabrication Nano Today6 493–509

[11] Li J P, Huang H and Morita T 2019 Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review Sens. Actuators A 292 39–51

[12] Lyu Z and Xu Q S 2021 Recent design and development of piezoelectric-actuated compliant microgrippers: a review Sens. Actuators A 331 113002

[13] Gu G Y, Zhu L M, Su C Y, Ding H and Fatikow S 2016 Modeling and control of piezo-actuated nanopositioning stages: a survey IEEE Trans. Autom. Sci. Eng.13 313–32

[14] Fleming A J 2013 A review of nanometer resolution position sensors: operation and performance Sens. Actuators A 190 106–26

[15] Ye Y, Zhang C Y, He C L, Wang X, Huang J J and Deng J H 2020 A review on applications of capacitive displacement sensing for capacitive proximity sensor IEEE Access8 45325–42

[16] Sabarianand D V, Karthikeyan P and Muthuramalingam T 2020 A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems Mech. Syst. Signal Process.140 106634

[17] Chen Z, Zhong X N, Shi J J and Zhang X M 2021 Damping-enabling technologies for broadband control of piezo-stages: a survey Annu. Rev. Control52 120–34

[18] Watanabe S and Ando T 2017 High-speed XYZ-nanopositioner for scanning ion conductance microscopy Appl. Phys. Lett.111 113106

[19] Yong Y K and Moheimani S O R 2015 Collocated Z-axis control of a high-speed nanopositioner for video-rate atomic force microscopy IEEE Trans. Nanotechnol.14 338–45

[20] Wang X Y, Meng Y X, Huang W W, Li L L, Zhu Z W and Zhu L M 2023 Design, modeling, and test of a normal-stressed electromagnetic actuated compliant nano-positioning stage Mech. Syst. Signal Process.185 109753

[21] Xie H, Wen Y B, Shen X J, Zhang H and Sun L N 2019 High-speed AFM imaging of nanopositioning stages using H∞ and iterative learning control IEEE Trans. Ind. Electron.67 2430–9

[22] Meng Y X, Wang X Y, Huang W W, Li L L, Hu C X, Zhang X Q and Zhu L M 2023 Intelligent tracking error prediction and feedforward compensation for nanopositioning stages with high-bandwidth control IEEE Trans. Ind. Inform.19 6460–70

[23] Moheimani S O R 2008 Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges Rev. Sci. Instrum.79 071101

[24] Bhikkaji B, Ratnam M, Fleming A J and Moheimani S O R 2007 High-performance control of piezoelectric tube scanners IEEE Trans. Control Syst. Technol.15 853–66

[25] Yong Y K, Moheimani S O R, Kenton B J and Leang K K 2012 Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues Rev. Sci. Instrum.83 121101

[26] Clayton G M, Tien S, Leang K K, Zou Q Z and Devasia S 2009 A review of feedforward control approaches in nanopositioning for high-speed SPM J. Dyn. Syst. Meas. Control131 061101

[27] Eielsen A A, Vagia M, Gravdahl J T and Pettersen K Y 2014 Damping and tracking control schemes for nanopositioning IEEE/ASME Trans. Mechatronics19 432–44

[28] Zhang X, Lai L J, Zhang L Q and Zhu L M 2022 Hysteresis and magnetic flux leakage of long stroke micro/nanopositioning electromagnetic actuator based on Maxwell normal stress Precis. Eng.75 1–11

[29] Zhu Z H, Huang P, To S, Zhu L M and Zhu Z W 2023 Fast-tool-servo-controlled shear-thickening micropolishing Int. J. Mach. Tools Manuf.184 103968

[30] Tian Y L, Huo Z C, Wang F J, Liang C M, Shi B C and Zhang D W 2022 A novel friction-actuated 2-DOF high precision positioning stage with hybrid decoupling structure Mech. Mach. Theory167 104511

[31] Gu G Y, Zhu L M, Su C Y and Ding H 2012 Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation IEEE/ASME Trans. Mechatronics18 1459–71

[32] Kang S Z, Wu H T, Li Y, Yang X L and Yao J F 2021 A fractional-order normalized Bouc–Wen model for piezoelectric hysteresis nonlinearity IEEE/ASME Trans. Mechatronics27 126–36

[33] Ling M X, Howell L L, Cao J Y and Chen G M 2020 Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey Appl. Mech. Rev.72 030802

[34] Zhu Z W, Chen L, Huang P, Schnemann L, Riemer O, Yao J Y, To S and Zhu W L 2019 Design and control of a piezoelectrically actuated fast tool servo for diamond turning of microstructured surfaces IEEE Trans. Ind. Electron.67 6688–97

[35] Li C X, Ding Y, Gu G Y and Zhu L M 2016 Damping control of piezo-actuated nanopositioning stages with recursive delayed position feedback IEEE/ASME Trans. Mechatronics22 855–64

[36] Huang W W, Hu C X and Zhu L M 2022 Robust repetitive control of nanopositioning stages using the spectrum-selection filter with narrow passbands IEEE/ASME Trans. Mechatronics27 4211–6

[37] Xu Q S 2016 Design and Implementation of Large-Range Compliant Micropositioning Systems (Wiley)

[38] Gao X Y, Yang J K, Wu J G, Xin X D, Li Z M, Yuan X T, Shen X Y and Dong S X 2020 Piezoelectric actuators and motors: materials, designs, and applications Adv. Mater. Technol.5 1900716

[39] Stadler G, Csencsics E, Ito S and Schitter G 2022 High precision hybrid reluctance actuator with integrated orientation independent zero power gravity compensation IEEE Trans. Ind. Electron.69 13296–304

[40] Yi S C, Zhang Q, Sun X Q, Yang B T and Meng G 2023 Simultaneous micropositioning and microvibration control of a magnetostrictive Stewart platform with synthesized strategy Mech. Syst. Signal Process.187 109925

[41] Zhu B L, Zhang X M, Zhang H C, Liang J W, Zang H Y, Li H and Wang R X 2020 Design of compliant mechanisms using continuum topology optimization: a review Mech. Mach. Theory143 103622

[42] Minase J, Lu T F, Cazzolato B and Grainger S 2010 A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators Precis. Eng.34 692–700

[43] Devasia S, Eleftheriou E and Moheimani S O R 2007 A survey of control issues in nanopositioning IEEE Trans. Control Syst. Technol.15 802–23

[44] Yang X, Zhu L M, Li S Z, Zhu W L and Ji C 2020 Development of a novel pile-up structure based nanopositioning mechanism driven by piezoelectric actuator IEEE/ASME Trans. Mechatronics25 502–12

[45] Sun X Q, Yang B T, Gao Y L and Yang Y K 2020 Integrated design, fabrication, and experimental study of a parallel micro-nano positioning-vibration isolation stage Robot. Comput. Integr. Manuf.66 101988

[46] Cai K H, Tian Y L, Liu X P, Zhang D W, Shang J K and Shirinzadeh B 2019 Development and control methodologies for 2-DOF micro/nano positioning stage with high out-of-plane payload capacity Robot. Comput. Integr. Manuf.56 95–105

[47] Yang M, Zhang C, Huang X L, Chen S L and Yang G L 2022 A long-stroke nanopositioning stage with annular flexure guides IEEE/ASME Trans. Mechatronics27 1570–81

[48] Yang M, Sun M Y, Wu Z, Li J H and Long Y 2023 Design of a redundant actuated 4-PPR planar 3-DOF compliant nanopositioning stage Precis. Eng.82 68–79

[49] Qiao Y, Zhao T Y and Gui X G 2022 Overview of position servo control technology and development of voice coil motor CES Trans. Electr. Mach. Syst.6 269–78

[50] Shan G Q, Li Y Z, Zhang L W, Wang Z Y, Zhang Y X and Qian J Q 2015 Contributed review: application of voice coil motors in high-precision positioning stages with large travel ranges Rev. Sci. Instrum.86 101501

[51] Uchino K 2017 Advanced Piezoelectric Materials: Science and Technology 2nd edn (Elsevier)

[52] Xu Q S and Tan K K 2016 Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems (Springer)

[53] Wang L, Chen W S, Liu J K, Deng J and Liu Y X 2019 A review of recent studies on non-resonant piezoelectric actuators Mech. Syst. Signal Process.133 106254

[54] Wu J, Mizuno Y and Nakamura K 2018 Polymer-based ultrasonic motors utilizing high-order vibration modes IEEE/ASME Trans. Mechatronics23 788–99

[55] Liu Y X, Chen W S, Liu J K and Yang X H 2013 A high-power linear ultrasonic motor using bending vibration transducer IEEE Trans. Ind. Electron.60 5160–6

[56] Zhou L F, Yao Z Y, Li X N and Dai S C 2019 Modeling and verification of thermal-mechanical-electric coupling dynamics of a V-shape linear ultrasonic motor Sens. Actuators A 298 111580

[57] Wang X Y, Zhu L M and Huang H 2020 A dynamic model of stick-slip piezoelectric actuators considering the deformation of overall system IEEE Trans. Ind. Electron.68 11266–75

[58] Wang X Y, Huang H, Fan H Y, Sun W X, Li X and Liu J H 2019 Evolution of one-stepping characteristics of a stick-slip piezoelectric actuator under various initial gaps Sens. Actuators A 295 348–56

[59] Ma X F, Liu Y X, Deng J, Gao X and Cheng J F 2023 A compact inchworm piezoelectric actuator with high speed: design, modeling, and experimental evaluation Mech. Syst. Signal Process.184 109704

[60] N J H et al 2022 Review on piezoelectric actuators based on high-performance piezoelectric materials IEEE Trans. Ultrason. Ferroelectr. Freq. Control69 3057–69

[61] Zhao D P, Du H H, Wang H T and Zhu Z W 2023 Development of a novel fast tool servo using topology optimization Int. J. Mech. Sci.250 108283

[62] Habibullah H 2020 30 years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners Measurement159 107776

[63] Gu G Y, Li Z, Zhu L M and Su C Y 2013 A comprehensive dynamic modeling approach for giant magnetostrictive material actuators Smart Mater. Struct.22 125005

[64] Liu Z D, Liu W K, Wang P, Li Z, Xu Y L, Yang X F and Shu F 2023 High-precision position tracking control of giant magnetostrictive actuators using fractional-order sliding mode control with inverse Prandtl-Ishlinskii compensator Int. J. Precis. Eng. Manuf.24 379–93

[65] Ito S, Cigarini F and Schitter G 2020 Flux-controlled hybrid reluctance actuator for high-precision scanning motion IEEE Trans. Ind. Electron.67 9593–600

[66] Zhu Z W, Chen L and To S 2021 A novel direct drive electromagnetic XY nanopositioning stage CIRP Ann.70 415–8

[67] Csencsics E, Schlarp J and Schitter G 2018 High-performance hybrid-reluctance-force-based tip/tilt system: design, control, and evaluation IEEE/ASME Trans. Mechatronics23 2494–502

[68] Huang X, Zhou W, Li X T, Zhu L M and Zhang H T 2022 Online Koopman operator learning to identify cross-coupling effect of piezoelectric tube scanners in atomic force microscopes IEEE Trans. Ind. Inform.18 1111–20

[69] Ma X F, Liu Y X, Liu J K and Deng J 2022 Crabbot: a pole-climbing robot driven by piezoelectric stack IEEE Trans. Robot.38 765–78

[70] Tian Y L, Cai K H, Zhang D W, Liu X P, Wang F J and Shirinzadeh B 2019 Development of a XYZ scanner for home-made atomic force microscope based on FPAA control Mech. Syst. Signal Process.131 222–42

[71] Kenton B J and Leang K K 2011 Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner IEEE/ASME Trans. Mechatronics17 356–69

[72] Bahl S, Nagar H, Singh I and Sehgal S 2020 Smart materials types, properties and applications: a review Mater. Today Proc.28 1302–6

[73] Sun X Q, Yi S C, Wang Z L and Yang B T 2018 A new bi-directional giant magnetostrictive-driven compliant tensioning stage oriented for maintenance of the surface shape precision Mech. Mach. Theory126 359–76

[74] Niu M Q, Yang B T, Yang Y K and Meng G 2020 Modelling and parameter design of a 3-DOF compliant platform driven by magnetostrictive actuators Precis. Eng.66 255–68

[75] Zhang F, Shao S B, Tian Z, Xu M L and Xie S L 2019 Active-passive hybrid vibration isolation with magnetic negative stiffness isolator based on Maxwell normal stress Mech. Syst. Signal Process.123 244–63

[76] Moya-Lasheras E, Schellekens J M and Sagues C 2021 Rauch–Tung–Striebel smoother for position estimation of short-stroke reluctance actuators IEEE Trans. Control Syst. Technol.30 1641–53

[77] MacKenzie I and Trumper D L 2016 Real-time hysteresis modeling of a reluctance actuator using a sheared-hysteresis-model observer IEEE/ASME Trans. Mechatronics21 4–16

[78] Moya-Lasheras E, Sagues C and Llorente S 2021 An efficient dynamical model of reluctance actuators with flux fringing and magnetic hysteresis Mechatronics74 102500

[79] Xu Y L, Li X P, Yang X F, Yang Z L, Wu L W and Chen Q S 2020 A two-stage model for rate-dependent inverse hysteresis in reluctance actuators Mech. Syst. Signal Process.135 106427

[80] Pechgraber D, Csencsics E and Schitter G 2023 Resonant rotational reluctance actuator for large range scanning mirrors IEEE/ASME Trans. Mechatronics28 3573–82

[81] Pechhacker A, Wertjanz D, Csencsics E and Schitter G 2024 Integrated electromagnetic actuator with adaptable zero power gravity compensation IEEE Trans. Ind. Electron.71 5055–62

[82] Cole M O T, Hongphan T and Chamroon C 2023 A high-efficiency magnetic suspension actuator with reluctance-balanced permanent magnet biasing and flux-based control Mechatronics93 102988

[83] Astarloa A, Wahab F, Mancisidor I, Fernandes M H, Etxaniz I and Munoa J 2024 Reluctance-based modular active damper for chatter suppression in boring bars with different overhangs IEEE/ASME Trans. Mechatronics29 679–90

[84] Hoekwater W B, Ronaes E and HosseinNia H 2023 Hybrid tunable magnet actuator: design of a linearized force-flux tunable magnet actuator IEEE Trans. Ind. Electron.71 5073–82

[85] Zhu Z H, Chen L, Niu Y H, Pu X N, Huang P, To S, Zhu L M and Zhu Z W 2021 Triaxial fast tool servo using hybrid electromagnetic–piezoelectric actuation for diamond turning IEEE Trans. Ind. Electron.69 1728–38

[86] Fang Y N, Pu X N, To S, Hon B, Zhu L M and Zhu Z W 2022 Normal-stressed electromagnetic triaxial fast tool servo for microcutting IEEE Trans. Ind. Electron.70 7131–40

[87] Lu X D 2005 Electromagnetically-Driven Ultra-Fast Tool Servos for Diamond Turning (Massachusetts Institute of Technology)

[88] Zhang C, Huang X L, Yang M, Chen S L and Yang G L 2022 Design of a long stroke nanopositioning stage with self-damping actuator and flexure guide IEEE Trans. Ind. Electron.69 10417–27

[89] Chen Z, Shi J J, Li Z P, Zhong X N and Zhang X M 2022 A damped decoupled XY nanopositioning stage embedding graded local resonators IEEE/ASME Trans. Mechatronics27 256–67

[90] Jia Y J, Tang H, Xu S F, Xu Y, Chen X and Tian Y L 2022 A novel decoupled flexure nanopositioner with thermal distortion self-elimination function IEEE/ASME Trans. Mechatronics27 2953–62

[91] Wu Z Y and Xu Q S 2018 Survey on recent designs of compliant micro-/nano-positioning stages Actuators7 5

[92] chsner A 2018 Engineering Applications for New Materials and Technologies (Springer)

[93] Huang W W, Li L L, Zhu Z W and Zhu L M 2022 Modeling, design and control of normal-stressed electromagnetic actuated fast tool servos Mech. Syst. Signal Process.178 109304

[94] Ling M X, Cao J Y, Jiang Z, Zeng M H and Li Q S 2019 Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static model Mech. Syst. Signal Process.115 120–31

[95] Grser P, Lin S, Harfensteller F, Torres M, Zentner L and Theska R 2021 High-precision and large-stroke XY micropositioning stage based on serially arranged compliant mechanisms with flexure hinges Precis. Eng.72 469–79

[96] Lobontiu N 2002 Compliant Mechanisms: Design of Flexure Hinges (CRC Press)

[97] Zhu W L, Duan F, Zhang X D, Zhu Z W and Ju B F 2018 A new diamond machining approach for extendable fabrication of micro-freeform lens array Int. J. Mach. Tools Manuf.124 134–48

[98] Moore S I, Yong Y K, Omidbeike M and Fleming A J 2021 Serial-kinematic monolithic nanopositioner with in-plane bender actuators Mechatronics75 102541

[99] Iqbal S and Malik A 2019 A review on MEMS based micro displacement amplification mechanisms Sens. Actuators A 300 111666

[100] Zhang Q, Zhao J G, Peng Y, Pu H Y and Yang Y 2020 A novel amplification ratio model of a decoupled XY precision positioning stage combined with elastic beam theory and Castigliano's second theorem considering the exact loading force Mech. Syst. Signal Process.136 106473

[101] Ling M X, Zhang C and Chen L G 2022 Optimized design of a compact multi-stage displacement amplification mechanism with enhanced efficiency Precis. Eng.77 77–89

[102] Chen Z, Li Z P, Jiang X M and Zhang X M 2019 Strain-based multimode integrating sensing for a bridge-type compliant amplifier Meas. Sci. Technol.30 105106

[103] Zhu Z W, To S, Ehmann K F and Zhou X Q 2017 Design, analysis, and realization of a novel piezoelectrically actuated rotary spatial vibration system for micro-/nanomachining IEEE/ASME Trans. Mechatronics22 1227–37

[104] Lin C, Shen Z L, Wu Z H and Yu J 2018 Kinematic characteristic analysis of a micro-/nano positioning stage based on bridge-type amplifier Sens. Actuators A 271 230–42

[105] Zhu W L, Zhu Z W, Shi Y, Wang X W, Guan K M and Ju B F 2016 Design, modeling, analysis and testing of a novel piezo-actuated XY compliant mechanism for large workspace nano-positioning Smart Mater. Struct.25 115033

[106] Muraoka M and Sanada S 2010 Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism Sens. Actuators A 157 84–90

[107] Du H H, Zhu Z W, Wang Z K and To S 2023 Fabrication of high-aspect-ratio and hierarchical micro/nanostructure arrays by a novel piezoelectrically actuated cutting system Mater. Des.226 111660

[108] Tan L W, Wang X Y, Yu Q, Yu B C, Meng Y X, Li L L, Zhang X Q and Zhu L M 2024 An electromagnetic-piezoelectric hybrid actuated nanopositioner for atomic force microscopy IEEE Trans. Instrum. Meas.73 7503813

[109] Chen J L, Zhang C L, Xu M L, Zi Y Y and Zhang X N 2015 Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model Mech. Syst. Signal Process.50 580–93

[110] Manske E, Jger G, Hausotte T and Fl R 2012 Recent developments and challenges of nanopositioning and nanomeasuring technology Meas. Sci. Technol.23 074001

[111] Abedi K, Shakhesi E, Seraj H, Mahnama M and Shirazi F A 2023 Design and analysis of a 2-DOF compliant serial micropositioner based on “S-shaped” flexure hinge Precis. Eng.83 228–36

[112] Wadikhaye S P, Yong Y K, Bhikkaji B and Moheimani S O R 2014 Control of a piezoelectrically actuated high-speed serial-kinematic AFM nanopositioner Smart Mater. Struct.23 025030

[113] Leang K K and Fleming A J 2008 High-speed serial-kinematic SPM scanner: design and drive considerations 2008 American Control Conf. (IEEE) pp 3188–93

[114] Zhu Z W, To S, Zhu W L, Li Y M and Huang P 2017 Optimum design of a piezo-actuated triaxial compliant mechanism for nanocutting IEEE Trans. Ind. Electron.65 6362–71

[115] Chen Y L, Li Z W, Chen F W, Lin H B, Ju B F and Liu Y 2021 Development of an optimized three-axis fast tool servo for ultraprecision cutting IEEE/ASME Trans. Mechatronics27 3244–54

[116] Li H C, Tang H, Li J D and Chen X 2021 Design, fabrication, and testing of a 3-DOF piezo fast tool servo for microstructure machining Precis. Eng.72 756–68

[117] Nagel W S, Andersson S B, Clayton G M and Leang K K 2022 Low-coupling hybrid parallel-serial-kinematic nanopositioner with nonorthogonal flexure: nonlinear design and control IEEE/ASME Trans. Mechatronics27 3683–93

[118] Kenton B J, Fleming A J and Leang K K 2011 Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed Rev. Sci. Instrum.82 123703

[119] Schitter G, Astrom K J, DeMartini B E, Thurner P J, Turner K L and Hansma P K 2007 Design and modeling of a high-speed AFM-scanner IEEE Trans. Control Syst. Technol.15 906–15

[120] Lyu Z and Xu Q S 2023 Design and testing of a large-workspace XY compliant manipulator based on triple-stage parallelogram flexure Mech. Mach. Theory184 105287

[121] Sun X Q, Wang Z L and Yang Y K 2019 Design and experimental investigation of a novel compliant positioning stage with low-frequency vibration isolation capability Sens. Actuators A 295 439–49

[122] Zhang C, Zhou M L, Nie L L, Zhang X Y and Su C Y 2023 Prandtl–Ishlinskii model based event-triggered prescribed control: design and application to piezoelectric-driven micropositioning stage Mech. Syst. Signal Process.200 110562

[123] Huang D Q, Min D, Jian Y P and Li Y N 2020 Current-cycle iterative learning control for high-precision position tracking of piezoelectric actuator system via active disturbance rejection control for hysteresis compensation IEEE Trans. Ind. Electron.67 8680–90

[124] Gao Y S, Zhang D W and Yu C W 2001 Dynamic modeling of a novel workpiece table for active surface grinding control Int. J. Mach. Tools Manuf.41 609–24

[125] Li Z, Zhang X Y, Gu G Y, Chen X K and Su C Y 2016 A comprehensive dynamic model for magnetostrictive actuators considering different input frequencies with mechanical loads IEEE Trans. Ind. Inform.12 980–90

[126] Ackerman A E, Liang C and Rogers C A 1996 Dynamic transduction characterization of magnetostrictive actuators Smart Mater. Struct.5 115–20

[127] Engdahl G 2000 Handbook of Giant Magnetostrictive Materials (Elsevier)

[128] Seyed-Bouzari S A, Saneie H and Nasiri-Gheidari Z 2023 Analysis and compensation of the longitudinal end effect in variable reluctance linear resolvers using magnetic equivalent circuit model IEEE Trans. Transp. Electrif.9 3970–7

[129] Fang Y N, Zhou R J, Zhu L M and Zhu Z W 2024 Equivalent magnetic network-based multiphysics optimization of a normal-stressed millimeter-range nanopositioning stage IEEE/ASME Trans. Mechatronics29 1477–88

[130] Pumphrey M, Alatawneh N and Al Janaideh M 2022 Modeling and analysis of reluctance motion system with asymmetrical air gaps Rev. Sci. Instrum.93 075001

[131] Ito S, Troppmair S, Lindner B, Cigarini F and Schitter G 2019 Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency IEEE Trans. Ind. Electron.66 3051–9

[132] Ramirez-Laboreo E, Roes M G L and Sagues C 2019 Hybrid dynamical model for reluctance actuators including saturation, hysteresis, and eddy currents IEEE/ASME Trans. Mechatronics24 1396–406

[133] Fang S H, Liu Q D, Lin H Y and Ho S L 2016 A novel flux-weakening control strategy for permanent-magnet actuator of vacuum circuit breaker IEEE Trans. Ind. Electron.63 2275–83

[134] Hassani V, Tjahjowidodo T and Do T N 2014 A survey on hysteresis modeling, identification and control Mech. Syst. Signal Process.49 209–33

[135] Jiles D C and Atherton D L 1986 Theory of ferromagnetic hysteresis J. Magn. Magn. Mater.61 48–60

[136] Smith R C and Ounaies Z 2000 A domain wall model for hysteresis in piezoelectric materials J. Intell. Mater. Syst. Struct.11 62–79

[137] Vaiana N and Rosati L 2023 Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses Mech. Syst. Signal Process.182 109539

[138] Sessa S, Vaiana N, Paradiso M and Rosati L 2020 An inverse identification strategy for the mechanical parameters of a phenomenological hysteretic constitutive model Mech. Syst. Signal Process.139 106622

[139] Visintin A 2013 Differential Models of Hysteresis (Springer)

[140] Luo X, Xiao M B, Ding Y and Ding H 2020 Hysteresis modeling and compensation of a pneumatic end-effector based on Gaussian process regression Sens. Actuators A 315 112227

[141] Tao Y D, Li H X and Zhu L M 2019 Rate-dependent hysteresis modeling and compensation of piezoelectric actuators using Gaussian process Sens. Actuators A 295 357–65

[142] Wang G and Chen G Q 2017 Identification of piezoelectric hysteresis by a novel Duhem model based neural network Sens. Actuators A 264 282–8

[143] Flores G and Rakotondrabe M 2023 Dahl hysteresis modeling and position control of piezoelectric digital manipulator IEEE Control Syst. Lett.7 1021–6

[144] Li Z, Li Z K, Xu H Z, Zhang X Y and Su C Y 2023 Development of a butterfly fractional-order backlash-like hysteresis model for dielectric elastomer actuators IEEE Trans. Ind. Electron.70 1794–801

[145] Shen Q K, Shi Y, Jia R F and Shi P 2021 Design on type-2 fuzzy-based distributed supervisory control with backlash-like hysteresis IEEE Trans. Fuzzy Syst.29 252–61

[146] Zhiyuan G, Yiru W, Muyao S and Xiaojin Z 2022 Theoretical and experimental investigation study of discrete time rate-dependent hysteresis modeling and adaptive vibration control for smart flexible beam with MFC actuators Sens. Actuators A 344 113738

[147] Li Z, Xu Y L, Yang X F, Feng J and Fang W 2021 Generalized inverse multiplicative structure for differential-equation-based hysteresis models IEEE Trans. Ind. Electron.68 4182–9

[148] Gan J Q and Zhang X M 2019 A review of nonlinear hysteresis modeling and control of piezoelectric actuators AIP Adv.9 040702

[149] Krasnosel'skii M A and Pokrovskii A V 2012 Systems with Hysteresis (Springer)

[150] Gu G Y, Zhu L M and Su C Y 2014 Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model IEEE Trans. Ind. Electron.61 1583–95

[151] Al Janaideh M, Xu R and Tan X B 2021 Adaptive estimation of play radii for a Prandtl–Ishlinskii hysteresis operator IEEE Trans. Control Syst. Technol.29 2687–95

[152] Webb G V, Lagoudas D C and Kurdila A J 1998 Hysteresis modeling of SMA actuators for control applications J. Intell. Mater. Syst. Struct.9 432–48

[153] Chen W H, Zhou L B, Wang J H, Zhao Z, Chen W J and Bai S P 2022 A Maxwell-slip based hysteresis model for nonlinear stiffness compliant actuators IEEE Trans. Ind. Electron.69 11510–20

[154] Bai X X, Cai F L and Chen P 2019 Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers Mech. Syst. Signal Process.117 157–69

[155] Li P Z, Yan F, Ge C, Wang X L, Xu L S, Guo J L and Li P Y 2013 A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators Mech. Syst. Signal Process.36 182–92

[156] Li P Z, Zhang D F, Hu J Y, Lennox B and Arvin F 2020 Hysteresis modelling and feedforward control of piezoelectric actuator based on simplified interval type-2 fuzzy system Sensors20 2587

[157] Lu K X, Liu Z, Chen C L P and Zhang Y 2020 Event-triggered neural control of nonlinear systems with rate-dependent hysteresis input based on a new filter IEEE Trans. Neural Netw. Learn. Syst.31 1270–84

[158] Ahmed K and Yan P 2021 Modeling and identification of rate dependent hysteresis in piezoelectric actuated nano-stage: a gray box neural network based approach IEEE Access9 65440–8

[159] Xu Q S and Wong P K 2011 Hysteresis modeling and compensation of a piezostage using least squares support vector machines Mechatronics21 1239–51

[160] Farrokh M 2018 Hysteresis simulation using least-squares support vector machine J. Eng. Mech.144 04018084

[161] Xu Q S 2013 Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse IEEE Trans. Ind. Electron.60 3927–37

[162] Tao Y D, Li H X and Zhu L M 2020 Hysteresis modeling with frequency-separation-based Gaussian process and its application to sinusoidal scanning for fast imaging of atomic force microscope Sens. Actuators A 311 112070

[163] Meng Y X, Wang X Y, Li L L, Huang W W and Zhu L M 2022 Hysteresis modeling and compensation of piezoelectric actuators using Gaussian process with high-dimensional input Actuators11 115

[164] Deng L S and Ling M X 2022 Design and integrated stroke sensing of a high-response piezoelectric direct-drive valve enhanced by push–pull compliant mechanisms Rev. Sci. Instrum.93 035008

[165] Chen L, Niu Y H, Yang X, Zhu W L, Zhu L M and Zhu Z W 2022 A novel compliant nanopositioning stage driven by a normal-stressed electromagnetic actuator IEEE Trans. Autom. Sci. Eng.19 3039–48

[166] Yu H T, Zhang C, Yang B, Chen S L, Fang Z J, Li R and Yang G L 2019 The design and kinetostatic modeling of 3PPR planar compliant parallel mechanism based on compliance matrix method Rev. Sci. Instrum.90 045102

[167] Wang J J, Yang Y, Yang R, Feng P F and Guo P 2019 On the validity of compliance-based matrix method in output compliance modeling of flexure-hinge mechanism Precis. Eng.56 485–95

[168] Zhu W L, Zhu Z W, Guo P and Ju B F 2018 A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics Mech. Syst. Signal Process.99 747–59

[169] Dong W, Zhang Q J, Zhu D F, Chen T and Gao Y Z 2023 Design and analysis of a piezo-actuated 2-DOF high-precision parallel pointing mechanism capable of carrying a heavy load Precis. Eng.81 50–59

[170] Wu K and Zheng G 2022 Insight into numerical solutions of static large deflection of general planar beams for compliant mechanisms Mech. Mach. Theory172 104757

[171] Wu K and Zheng G 2022 A comprehensive static modeling methodology via beam theory for compliant mechanisms Mech. Mach. Theory169 104598

[172] Arredondo-Soto M, Cuan-Urquizo E and Gmez-Espinosa A 2022 The compliance matrix method for the kinetostatic analysis of flexure-based compliant parallel mechanisms: conventions and general force–displacement cases Mech. Mach. Theory168 104583

[173] Chen N and Tian C 2021 Design, modeling and testing of a 3-DOF flexible piezoelectric thin sheet nanopositioner Sens. Actuators A 323 112660

[174] Li Y M and Xu Q S 2009 Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator IEEE Trans. Robot.25 645–57

[175] Wu Y F and Zhou Z Y 2002 Design calculations for flexure hinges Rev. Sci. Instrum.73 3101–6

[176] Tian Y, Shirinzadeh B, Zhang D and Zhong Y 2010 Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis Precis. Eng.34 92–100

[177] Tian Y, Shirinzadeh B and Zhang D 2010 Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design Precis. Eng.34 408–18

[178] Tian Y L, Lu K K, Wang F J, Zhou C K, Ma Y, Jing X B, Yang C J and Zhang D W 2020 A spatial deployable three-DOF compliant nano-positioner with a three-stage motion amplification mechanism IEEE/ASME Trans. Mechatronics25 1322–34

[179] Zhang D F, Li P Z, Zhang J G, Chen H N, Guo K and Ni M Y 2019 Design and assessment of a 6-DOF micro/nanopositioning system IEEE/ASME Trans. Mechatronics24 2097–107

[180] Tang J Y, Fan H Y, Liu J H and Huang H 2020 Suppressing the backward motion of a stick–slip piezoelectric actuator by means of the sequential control method (SCM) Mech. Syst. Signal Process.143 106855

[181] Yuan X Q, Liu Y X, Zou H, Ji J J, Zhou T and Wang W D 2022 Design and analysis of a 2-D piezoelectric platform based on three-stage amplification and L-shaped guiding IEEE Trans. Instrum. Meas.71 7505712

[182] Wu Y X, Yang Y L, Li G P, Cui Y G, Du H L and Wei Y D 2022 A non-redundant piezoelectric center-rotation platform with a single-layer structure and a large working range Mechatronics88 102911

[183] Zhang L, Liu P B and Yan P 2021 A novel compact tilt stage with additive manufacturable spatial flexure mechanism driven by asymmetric stiffness Mech. Mach. Theory166 104443

[184] Yang Z Y, Shi Y S and Yan P 2023 A novel design of compact tilt stage with spatially distributed anti-symmetric compliant mechanism Sens. Actuators A 349 113995

[185] Gao X, Liu Y X, Zhang S J, Deng J and Liu J K 2022 Development of a novel flexure-based XY platform using single bending hybrid piezoelectric actuator IEEE/ASME Trans. Mechatronics27 3977–87

[186] Xu Q S and Li Y M 2011 Modeling and control of rate-dependent hysteresis for a piezo-driven micropositioning stage 2011 IEEE Int. Conf. on Robotics and Automation (IEEE) pp 1670–5

[187] Li W, Chen X D and Li Z L 2013 Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model Rev. Sci. Instrum.84 115003

[188] Wen Z J, Ding Y, Liu P K and Ding H 2019 An efficient identification method for dynamic systems with coupled hysteresis and linear dynamics: application to piezoelectric-actuated nanopositioning stages IEEE/ASME Trans. Mechatronics24 326–37

[189] Zhong J H and Yao B 2008 Adaptive robust precision motion control of a piezoelectric positioning stage IEEE Trans. Control Syst. Technol.16 1039–46

[190] Huang W W, Guo P, Hu C X and Zhu L M 2022 High-performance control of fast tool servos with robust disturbance observer and modified H∞ control Mechatronics84 102781

[191] Yang C, Xia F Z, Wang Y and Youcef-Toumi K 2022 Comprehensive study of charge-based motion control for piezoelectric nanopositioners: modeling, instrumentation and controller design Mech. Syst. Signal Process.166 108477

[192] Li Z, Shan J J and Gabbert U 2019 Dynamics modeling and inversion-based synchronized model predictive control for a Fabry–Perot spectrometer IEEE/ASME Trans. Mechatronics24 1818–28

[193] Lu X D and Trumper D L 2005 Ultrafast tool servos for diamond turning CIRP Ann.54 383–8

[194] Nie Y H, Fang F Z and Zhang X D 2014 System design of Maxwell force driving fast tool servos based on model analysis Int. J. Adv. Manuf. Technol.72 25–32

[195] Li M, Zhu Y, Yang K M, Hu C X and Mu H H 2016 An integrated model-data-based zero-phase error tracking feedforward control strategy with application to an ultraprecision wafer stage IEEE Trans. Ind. Electron.64 4139–49

[196] Gu G Y, Yang M J and Zhu L M 2012 Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model Rev. Sci. Instrum.83 065106

[197] Li L L, Li C X, Gu G Y and Zhu L M 2017 Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages Mechatronics47 97–104

[198] Fleming A J, Aphale S S and Moheimani S O R 2009 A new method for robust damping and tracking control of scanning probe microscope positioning stages IEEE Trans. Nanotechnol.9 438–48

[199] Fan X G, Zhi Y L, Liao C, Shen J and Wang X 2021 A nano positioning platform for STM and its compound control algorithm IEEE Trans. Instrum. Meas.71 2001709

[200] Habibullah H, Pota H R and Petersen I R 2019 A robust control approach for high-speed nanopositioning applications Sens. Actuators A 292 137–48

[201] Wang Z, Zhou R, Hu C X and Zhu Y 2021 Online iterative learning compensation method based on model prediction for trajectory tracking control systems IEEE Trans. Ind. Inform.18 415–25

[202] Wu D and Chen K 2009 Design and analysis of precision active disturbance rejection control for noncircular turning process IEEE Trans. Ind. Electron.56 2746–53

[203] Rana M S, Pota H R and Petersen I R 2014 Nonlinearity effects reduction of an AFM piezoelectric tube scanner using MIMO MPC IEEE/ASME Trans. Mechatronics20 1458–69

[204] Tao Y D, Li H X and Zhu L M 2020 Time/space-separation-based Gaussian process modeling for the cross-coupling effect of a 2-DOF nanopositioning stage IEEE/ASME Trans. Mechatronics26 2186–94

[205] Li L L, Huang W W, Wang X Y, Chen Y L and Zhu L M 2022 Periodic-disturbance observer using spectrum-selection filtering scheme for cross-coupling suppression in atomic force microscopy IEEE Trans. Autom. Sci. Eng.20 2037–48

[206] Doyle J C, Francis B A and Tannenbaum A R 1990 Feedback Control Theory (Macmillan)

[207] Ling J, Feng Z, Chen L, Zhu Y C and Pan Y P 2023 Neural network-based iterative learning control of a piezo-driven nanopositioning stage Precis. Eng.81 112–23

[208] de Rozario R, Fleming A and Oomen T 2019 Finite-time learning control using frequency response data with application to a nanopositioning stage IEEE/ASME Trans. Mechatronics24 2085–96

[209] Liu J B, Wang J R and Zou Q Z 2021 Decomposition-learning-based output tracking to simultaneous hysteresis and dynamics control: high-speed large-range nanopositioning example IEEE Trans. Control Syst. Technol.29 1775–82

[210] Shan Y F and Leang K K 2012 Accounting for hysteresis in repetitive control design: nanopositioning example Automatica48 1751–8

[211] Shan Y F and Leang K K 2013 Design and control for high-speed nanopositioning: serial-kinematic nanopositioners and repetitive control for nanofabrication IEEE Control Syst. Mag.33 86–105

[212] Helfrich B E, Lee C, Bristow D A, Xiao X H, Dong J Y, Alleyne A G, Salapaka S M and Ferreira P M 2010 Combined H∞-feedback control and iterative learning control design with application to nanopositioning systems IEEE Trans. Control Syst. Technol.18 336–51

[213] Parmar G, Barton K and Awtar S 2014 Large dynamic range nanopositioning using iterative learning control Precis. Eng.38 48–56

[214] Yan Y, Wang H M and Zou Q Z 2012 A decoupled inversion-based iterative control approach to multi-axis precision positioning: 3D nanopositioning example Automatica48 167–76

[215] Kim K S and Zou Q Z 2012 A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems IEEE/ASME Trans. Mechatronics18 1767–77

[216] Song G, Zhao J, Zhou X and De Abreu-Garca J A 2005 Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model IEEE/ASME Trans. Mechatronics10 198–209

[217] Al Janaideh M, Rakheja S and Su C Y 2011 An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control IEEE/ASME Trans. Mechatronics16 734–44

[218] Lin C J and Lin P T 2012 Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model Comput. Math. Appl.64 766–87

[219] Qin Y D, Tian Y L, Zhang D W, Shirinzadeh B and Fatikow S 2013 A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications IEEE/ASME Trans. Mechatronics18 981–9

[220] Li Z, Shan J J and Gabbert U 2021 A direct inverse model for hysteresis compensation IEEE Trans. Ind. Electron.68 4173–81

[221] Qin Y D, Duan H and Han J D 2022 Direct inverse hysteresis compensation of piezoelectric actuators using adaptive Kalman filter IEEE Trans. Ind. Electron.69 9385–95

[222] Li P Z, Li P Y and Sui Y 2016 Adaptive fuzzy hysteresis internal model tracking control of piezoelectric actuators with nanoscale application IEEE Trans. Fuzzy Syst.24 1246–54

[223] Yi J G, Chang S and Shen Y T 2009 Disturbance-observer-based hysteresis compensation for piezoelectric actuators IEEE/ASME Trans. Mechatronics14 456–64

[224] Friswell M I and Inman D J 1999 The relationship between positive position feedback and output feedback controllers Smart Mater. Struct.8 285–91

[225] Bhikkaji B, Ratnam M and Moheimani S O R 2007 PVPF control of piezoelectric tube scanners Sens. Actuators A 135 700–12

[226] Bhikkaji B and Moheimani S O R 2008 Integral resonant control of a piezoelectric tube actuator for fast nanoscale positioning IEEE/ASME Trans. Mechatronics13 530–7

[227] Yang M J, Niu J B, Li C X, Gu G Y and Zhu L M 2015 High-bandwidth control of nanopositioning stages via an inner-loop delayed position feedback IEEE Trans. Autom. Sci. Eng.12 1357–68

[228] Huang W W, Li L L, Li Z L, Zhu Z W and Zhu L M 2021 Robust high-bandwidth control of nano-positioning stages with Kalman filter based extended state observer and H∞ control Rev. Sci. Instrum.92 065003

[229] Tao Y D, Li L L, Li H X and Zhu L M 2022 High-bandwidth tracking control of piezoactuated nanopositioning stages via active modal control IEEE Trans. Autom. Sci. Eng.19 2998–3006

[230] Fleming A J 2010 Nanopositioning system with force feedback for high-performance tracking and vibration control IEEE/ASME Trans. Mechatronics15 433–47

[231] Bazaei A, Boudaoud M, Ettefagh M H, Chen Z Y and Rgnier S 2019 Displacement sensing by piezoelectric transducers in high-speed lateral nanopositioning IEEE Sens. J.19 9156–65

[232] Yang C and Youcef-Toumi K 2022 Decoupled tracking and damping control of piezo-actuated nanopositioner enabled by multimode charge sensing Mech. Syst. Signal Process.173 109046

[233] Xu R, Wang Z S, Zhou M L and Tian D P 2023 A robust fractional-order sliding mode control technique for piezoelectric nanopositioning stages in trajectory-tracking applications Sens. Actuators A 363 114711

[234] Rana M S, Pota H R and Petersen I R 2013 High-speed AFM image scanning using observer-based MPC-notch control IEEE Trans. Nanotechnol.12 246–54

[235] Chen X K, Su C Y, Li Z and Yang F 2016 Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator IEEE Trans. Ind. Electron.63 6471–81

[236] Altaher M, Russell D and Aphale S S 2019 A dual-loop tracking control approach to precise nanopositioning J. Vib. Control.25 666–74

[237] Russell D, Fleming A J and Aphale S S 2015 Simultaneous optimization of damping and tracking controller parameters via selective pole placement for enhanced positioning bandwidth of nanopositioners J. Dyn. Syst. Meas. Control137 101004

[238] Altaher M and Aphale S 2019 Enhanced positioning bandwidth in nanopositioners via strategic pole placement of the tracking controller Vibration2 49–63

[239] Babarinde A K, Li L L, Zhu L M and Aphale S S 2020 Experimental validation of the simultaneous damping and tracking controller design strategy for high-bandwidth nanopositioning–a PAVPF approach IET Control Theory Appl.14 3506–14

[240] Wang X Y, Li L L, Zhu Z W and Zhu L M 2022 Simultaneous damping and tracking control of a normal-stressed electromagnetic actuated nano-positioning stage Sens. Actuators A 338 113467

[241] Tsao T C and Tomizuka M 1987 Adaptive zero phase error tracking algorithm for digital control J. Dyn. Syst. Meas. Control109 349–54

[242] Meng Y X, Chen Z Z, Huang W W, Zhang X Q, Hu C X and Zhu L M 2024 An enhanced real-time iterative compensation method for fast tool servos with resonance suppression IEEE Trans. Ind. Electron.71 6183–92

[243] Hu C X, Ou T S, Zhu Y and Zhu L M 2021 GRU-type LARC strategy for precision motion control with accurate tracking error prediction IEEE Trans. Ind. Electron.68 812–20

[244] Zhu W H, Jun M B and Altintas Y 2001 A fast tool servo design for precision turning of shafts on conventional CNC lathes Int. J. Mach. Tools Manuf.41 953–65

[245] Ding F, Luo X C, Cai Y K and Chang W L 2020 Acceleration feedback control for enhancing dynamic stiffness of fast tool servo system considering the sensor imperfections Mech. Syst. Signal Process.141 106429

[246] Chen W H, Yang J, Guo L and Li S H 2016 Disturbance-observer-based control and related methods—an overview IEEE Trans. Ind. Electron.63 1083–95

[247] Ohishi K, Nakao M, Ohnishi K and Miyachi K 1987 Microprocessor-controlled DC motor for load-insensitive position servo system IEEE Trans. Ind. Electron.IE-34 44–49

[248] Han J Q 2009 From PID to active disturbance rejection control IEEE Trans. Ind. Electron.56 900–6

[249] Zhang Z M and Yan P 2023 Infinite dimensional design approach of robust disturbance observer for a piezo-actuated nano-positioner with measurement delays IEEE/ASME Trans. Mechatronics28 3583–8

[250] Li L L, Fleming A J, Yong Y K, Aphale S S and Zhu L M 2022 High performance raster scanning of atomic force microscopy using model-free repetitive control Mech. Syst. Signal Process.173 109027

[251] Das S K, Pota H R and Petersen I R 2015 Multivariable negative-imaginary controller design for damping and cross coupling reduction of nanopositioners: a reference model matching approach IEEE/ASME Trans. Mechatronics20 3123–34

[252] Habibullah H, Pota H R, Petersen I R and Rana M S 2013 Creep, hysteresis, and cross-coupling reduction in the high-precision positioning of the piezoelectric scanner stage of an atomic force microscope IEEE Trans. Nanotechnol.12 1125–34

[253] Bhagat U, Shirinzadeh B, Clark L, Qin Y D, Tian Y L and Zhang D W 2014 Experimental investigation of robust motion tracking control for a 2-DOF flexure-based mechanism IEEE/ASME Trans. Mechatronics19 1737–45

[254] Li L L, Li C X, Gu G Y and Zhu L M 2019 Modified repetitive control based cross-coupling compensation approach for the piezoelectric tube scanner of atomic force microscopes IEEE/ASME Trans. Mechatronics24 666–76

[255] Meng Y X, Li L L, Wang X Y, Zhang X Q and Zhu L M 2023 Data-driven based cross-coupling compensation method for the piezoelectric tube scanner of atomic force microscopes Measurement219 113260

[256] Necipoglu S, Cebeci S A, Has Y E, Guvenc L and Basdogan C 2011 Robust repetitive controller for fast AFM imaging IEEE Trans. Nanotechnol.10 1074–82

[257] Crudele M and Kurfess T R 2003 Implementation of a fast tool servo with repetitive control for diamond turning Mechatronics13 243–57

[258] Wang H F and Yang S Y 2013 Design and control of a fast tool servo used in noncircular piston turning process Mech. Syst. Signal Process.36 87–94

[259] Li C X, Gu G Y, Zhu L M and Su C Y 2016 Odd-harmonic repetitive control for high-speed raster scanning of piezo-actuated nanopositioning stages with hysteresis nonlinearity Sens. Actuators A 244 95–105

[260] Yang S F, Wang P, Tang Y, Zagrodnik M, Hu X L and Tseng K J 2018 Circulating current suppression in modular multilevel converters with even-harmonic repetitive control IEEE Trans. Ind. Appl.54 298–309

[261] Lu W Z, Zhou K L, Wang D W and Cheng M 2014 A generic digital nk±m-order harmonic repetitive control scheme for PWM converters IEEE Trans. Ind. Electron.61 1516–27

[262] Li C X, Gu G Y, Yang M J and Zhu L M 2015 High-speed tracking of a nanopositioning stage using modified repetitive control IEEE Trans. Autom. Sci. Eng.14 1467–77

[263] Li L L, Chen Z Z, Aphale S S and Zhu L M 2020 Fractional repetitive control of nanopositioning stages for high-speed scanning using low-pass FIR variable fractional delay filter IEEE/ASME Trans. Mechatronics25 547–57

[264] Chen C W, Rai S and Tsao T C 2019 Iterative learning of dynamic inverse filters for feedforward tracking control IEEE/ASME Trans. Mechatronics25 349–59

[265] Blanken L and Oomen T 2019 Multivariable iterative learning control design procedures: from decentralized to centralized, illustrated on an industrial printer IEEE Trans. Control Syst. Technol.28 1534–41

[266] Lu J Y, Cao Z X, Zhang R D and Gao F R 2018 Nonlinear monotonically convergent iterative learning control for batch processes IEEE Trans. Ind. Electron.65 5826–36

[267] Wu Y and Zou Q Z 2007 Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators IEEE Trans. Control Syst. Technol.15 936–44

[268] Zhang Z Z and Zou Q Z 2022 Optimal data-driven difference-inversion-based iterative control: high-speed nanopositioning tracking example IEEE Trans. Control Syst. Technol.31 144–54

[269] Chen X and Tomizuka M 2014 New repetitive control with improved steady-state performance and accelerated transient IEEE Trans. Control Syst. Technol.22 664–75

[270] Li L L, Aphale S S and Zhu L M 2021 Enhanced odd-harmonic repetitive control of nanopositioning stages using spectrum-selection filtering scheme for high-speed raster scanning IEEE Trans. Autom. Sci. Eng.18 1087–96

[271] Steinbuch M, Weiland S and Singh T 2007 Design of noise and period-time robust high-order repetitive control, with application to optical storage Automatica43 2086–95

[272] Pipeleers G, Demeulenaere B, De Schutter J and Swevers J 2008 Robust high-order repetitive control: optimal performance trade-offs Automatica44 2628–34

[273] Steinbuch M 2002 Repetitive control for systems with uncertain period-time Automatica38 2103–9

[274] Li L L, Wang X Y, Huang W W, Zhang X Q and Zhu L M 2024 Design of general parametric repetitive control using IIR filter with application to piezo-actuated nanopositioning stages IEEE Trans. Autom. Sci. Eng.21 2102–12

[275] Li L L, Huang W W, Wang X Y and Zhu L M 2022 Dual-notch-based repetitive control for tracking Lissajous scan trajectories with piezo-actuated nanoscanners IEEE Trans. Instrum. Meas.71 4503612

[276] Huang W W, Zhang X Q and Zhu L M 2023 Band-stop-filter-based repetitive control of fast tool servos for diamond turning of micro-structured functional surfaces Precis. Eng.83 124–33

[277] Cui P L, Wang Q R, Zhang G X and Gao Q 2018 Hybrid fractional repetitive control for magnetically suspended rotor systems IEEE Trans. Ind. Electron.65 3491–8

[278] Muramatsu H and Katsura S 2018 An adaptive periodic-disturbance observer for periodic-disturbance suppression IEEE Trans. Ind. Inform.14 4446–56

[279] Liu Z C, Zhou K L, Yang Y H, Wang J C and Zhang B 2021 Frequency-adaptive virtual variable sampling-based selective harmonic repetitive control of power inverters IEEE Trans. Ind. Electron.68 11339–47

[280] Bristow D A, Tharayil M and Alleyne A G 2006 A survey of iterative learning control IEEE Control Syst. Mag.26 96–114

[281] Ahn H S, Chen Y Q and Moore K L 2007 Iterative learning control: brief survey and categorization IEEE Trans. Syst. Man Cybern. C 37 1099–121

[282] Li M, Xiong J X, Cheng R, Zhu Y, Yang K M and Sun F M 2023 Rational feedforward tuning using variance-optimal instrumental variables method based on dual-loop iterative learning control IEEE Trans. Ind. Inform.19 2585–95

[283] Xie S W and Ren J 2019 High-speed AFM imaging via iterative learning-based model predictive control Mechatronics57 86–94

[284] Nikooienejad N, Maroufi M and Moheimani S O R 2021 Iterative learning control for video-rate atomic force microscopy IEEE/ASME Trans. Mechatronics26 2127–38

[285] Jian Y P, Huang D Q, Liu J B and Min D 2019 High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis IEEE Trans. Ind. Electron.66 368–77

[286] Zhou M L, Yu Y W, Zhang J G and Gao W 2020 Iterative learning and fractional order PID hybrid control for a piezoelectric micro-positioning platform IEEE Access8 144654–64

[287] Wang Y Q, Gao F R and Doyle I I I F J 2009 Survey on iterative learning control, repetitive control, and run-to-run control J. Process Control19 1589–600

[288] Tien S, Zou Q Z and Devasia S 2005 Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation IEEE Trans. Control Syst. Technol.13 921–31

[289] Uchihashi T, Watanabe H, Fukuda S, Shibata M and Ando T 2016 Functional extension of high-speed AFM for wider biological applications Ultramicroscopy160 182–96

[290] Fukuda S and Ando T 2021 Faster high-speed atomic force microscopy for imaging of biomolecular processes Rev. Sci. Instrum.92 033705

[291] Yong Y K and Fleming A J 2016 High-speed vertical positioning stage with integrated dual-sensor arrangement Sens. Actuators A 248 184–92

[292] Fleming A J, Kenton B J and Leang K K 2010 Bridging the gap between conventional and video-speed scanning probe microscopes Ultramicroscopy110 1205–14

[293] Fleming A J and Yong Y K 2017 An ultrathin monolithic XY nanopositioning stage constructed from a single sheet of piezoelectric material IEEE/ASME Trans. Mechatronics22 2611–8

[294] Cai K H, He X B, Tian Y L, Liu X P, Zhang D W and Shirinzadeh B 2018 Design of a XYZ scanner for home-made high-speed atomic force microscopy Microsyst. Technol.24 3123–32

[295] Shimizu M, Okamoto C, Umeda K, Watanabe S, Ando T and Kodera N 2022 An ultrafast piezoelectric Z-scanner with a resonance frequency above 1.1 MHz for high-speed atomic force microscopy Rev. Sci. Instrum.93 013701

[296] Wang X Y, Li L L, Meng Y X, Tan L W, Huang W W, Zhu Z W, Jiao F and Zhu L M 2024 A normal-stressed electromagnetic-driven stiffness-tunable nanopositioner IEEE Trans. Ind. Electron.71 1–10

[297] Wadikhaye S P, Yong Y K and Moheimani S O R 2011 A novel serial-kinematic AFM scanner: design and characterization IECON 2011–37th Annual Conf. of the IEEE Industrial Electronics Society (IEEE) pp 50–55

[298] Zhu Z W, Zhou X Q, Liu Z W, Wang R Q and Zhu L 2014 Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining Precis. Eng.38 809–20

[299] Liu Y M, Zheng Y P, Gu Y, Lin J Q, Lu M M, Xu Z S and Fu B 2019 Development of piezo-actuated two-degree-of-freedom fast tool servo system Micromachines10 337

[300] Pu X N, Zhu Z H, Chen L, Huang P, Wang Y L and Zhu Z W 2021 Dual-axial tool servo diamond turning of hierarchical micro-nano-structured surfaces J. Manuf. Mater. Process.5 58

[301] Zhu Z W, Du H H, Zhou R J, Huang P, Zhu W L and Guo P 2020 Design and trajectory tracking of a nanometric ultra-fast tool servo IEEE Trans. Ind. Electron.67 432–41

[302] Zhou R J, Zhu Z H, Kong L B, Yang X, Zhu L M and Zhu Z W 2022 Development of a high-performance force sensing fast tool servo IEEE Trans. Ind. Inform.18 35–45

[303] Yoshioka H, Kojima K and Toyota D 2020 Micro patterning on curved surface with a fast tool servo system for micro milling process CIRP Ann.69 325–8

[304] Huang W W, Zhu Z W, Zhang X Q and Zhu L M 2024 A hybrid electromagnetic-piezoelectric actuated tri-axial fast tool servo integrated with a three-dimensional elliptical vibration generator Precis. Eng.86 213–24

[305] Yu H Q, Han J G, Li S Y, Han X Z, Liu Y H, Wang J H and Lin J Q 2022 Multi-objective optimization design and performance evaluation of a novel flexure-based tri-axial servo cutting system J. Manuf. Process.84 1133–49

[306] Kim H S, Lee K I, Lee K M and Bang Y B 2009 Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement Int. J. Mach. Tools Manuf.49 991–7

[307] Mitrovic A, Nagel W S, Leang K K and Clayton G M 2021 Closed-loop range-based control of dual-stage nanopositioning systems IEEE/ASME Trans. Mechatronics26 1412–21

[308] Kim B S, Li J and Tsao T C 2004 Two-parameter robust repetitive control with application to a novel dual-stage actuator for noncircular machining IEEE/ASME Trans. Mechatronics9 644–52

[309] Chen C W, Chang Y C and Tsao T C 2017 Dynamic trajectory tracking by synergistic dual-stage actuation and control IEEE/ASME Trans. Mechatronics22 2600–10

[310] Zhao D P, Zhu Z H, Huang P, Guo P, Zhu L M and Zhu Z W 2020 Development of a piezoelectrically actuated dual-stage fast tool servo Mech. Syst. Signal Process.144 106873

[311] Du X T, Shen D R, Huang P, Zhu L M and Zhu Z W 2023 Dual-stage fast tool servo cascading a primary normal-stressed electromagnetic stage with a secondary piezo-actuated stage Precis. Eng.80 171–9

[312] Huang P, Wu X Y, To S, Zhu L M and Zhu Z W 2020 Deterioration of form accuracy induced by servo dynamics errors and real-time compensation for slow tool servo diamond turning of complex-shaped optics Int. J. Mach. Tools Manuf.154 103556

[313] Eaton P and West P 2010 Atomic Force Microscopy (Oxford University Press)

[314] Gao W, Chen Y L, Lee K W, Noh Y J, Shimizu Y and Ito S 2013 Precision tool setting for fabrication of a microstructure array CIRP Ann.62 523–6

[315] Chen Y L, Wang S, Shimizu Y, Ito S, Gao W and Ju B F 2015 An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor Precis. Eng.39 134–42

[316] Chen Y L, Shimizu Y, Cai Y D, Wang S, Ito S, Ju B F and Gao W 2015 Self-evaluation of the cutting edge contour of a microdiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe Int. J. Adv. Manuf. Technol.77 2257–67

[317] Ando T 2012 High-speed atomic force microscopy coming of age Nanotechnology23 062001

Huang Wei-Wei, Wang Xiangyuan, Meng Yixuan, Li Linlin, Zhang Xinquan, Ren Mingjun, Zhu Li-Min. Design, modeling and control of high-bandwidth nano-positioning stages for ultra-precise measurement and manufacturing: a survey[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62007
Download Citation