• Photonics Research
  • Vol. 13, Issue 4, 1021 (2025)
V. G. Kravets1, Zhaolong Chen2,3, Yashar Mayamei1, K. S. Novoselov2, and A. N. Grigorenko1,*
Author Affiliations
  • 1Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
  • 2Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
  • 3School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.537107 Cite this Article Set citation alerts
    V. G. Kravets, Zhaolong Chen, Yashar Mayamei, K. S. Novoselov, A. N. Grigorenko, "Bilayer MoS2 nanoribbons: observation of optically inactive “exciton-free” regions and electrical gating of optical response," Photonics Res. 13, 1021 (2025) Copy Citation Text show less
    References

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200(2005).

    [3] K. F. Mak, C. Lee, J. Hone. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [4] B. Radisavljevic, A. Radenovic, J. Brivio. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147-150(2011).

    [5] C.-P. Lu, G. Li, J. Mao. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett., 14, 4628-4633(2014).

    [6] A. K. M. Newaz, D. Prasai, J. I. Ziegler. Electrical control of optical properties of monolayer MoS2. Solid State Commun., 155, 49-52(2013).

    [7] V. G. Kravets, F. Wu, G. H. Auton. Measurements of electrically tunable refractive index of MoS2 monolayer and its usage in optical modulators. npj 2D Mater. Appl., 3, 36(2019).

    [8] C. Qin, Y. Gao, Z. Qiao. Atomic-layered MoS2 as a tunable optical platform. Adv. Opt. Mater., 4, 1429-1456(2016).

    [9] G. A. Ermolaev, D. V. Grudinin, Y. V. Stebunov. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun., 12, 854(2021).

    [10] G. A. Ermolaev, Y. V. Stebunov, A. A. Vyshnevyy. Broadband optical properties of monolayer and bulk MoS2. npj 2D Mater. Appl., 4, 21(2020).

    [11] J. Chen, M. Badioli, P. Alonso-González. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77-81(2012).

    [12] D. Rodrigo, O. Limaj, D. Janner. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [13] P. Li, I. Dolado, F. J. Alfaro-Mozaz. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359, 892-896(2018).

    [14] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 6, 749-758(2012).

    [15] S. Li, Y.-C. Lin, W. Zhao. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater., 17, 535-542(2018).

    [16] J.-B. Wu, H. Zhao, Y. Li. Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater., 4, 756-762(2016).

    [17] Y. Li, Z. Zhou, S. Zhang. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc., 130, 16739-16744(2008).

    [18] C. Ataca, H. Şahin, E. Aktürk. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C, 115, 3934-3941(2011).

    [19] K. Dolui, C. D. Pemmaraju, S. Sanvito. Electric field effects on armchair MoS2 nanoribbons. ACS Nano, 6, 4823-4834(2012).

    [20] H. Pan, Y.-W. Zhang. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C, 116, 11752-11757(2012).

    [21] D. D. Fan, H. J. Liu, L. Cheng. MoS2 nanoribbons as promising thermoelectric materials. Appl. Phys. Lett., 105, 133113(2014).

    [22] J. J. Hopfield, D. G. Thomas. Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys. Rev., 132, 563-572(1963).

    [23] F. Evangelisti, A. Frova, F. Patella. Nature of the dead layer in CdS and its effect on exciton reflectance spectra. Phys. Rev. B, 10, 4253-4261(1974).

    [24] V. G. Kravets, A. A. Zhukov, M. Holwill. ‘Dead’ exciton layer and exciton anisotropy of bulk MoS2 extracted from optical measurements. ACS Nano, 16, 18637-18647(2022).

    [25] Z. Zhang, J. T. Yates. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev., 112, 5520-5551(2012).

    [26] T. Yu, F. Rodriguez, F. Schedin. Nanoscale light field imaging with graphene. Commun. Mater., 3, 40(2022).

    [27] S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B, 32, 6601-6609(1985).

    [28] N. Peimyoo, T. Deilmann, F. Withers. Electrical tuning of optically active interlayer excitons in bilayer MoS2. Nat. Nanotechnol., 16, 888-893(2021).

    V. G. Kravets, Zhaolong Chen, Yashar Mayamei, K. S. Novoselov, A. N. Grigorenko, "Bilayer MoS2 nanoribbons: observation of optically inactive “exciton-free” regions and electrical gating of optical response," Photonics Res. 13, 1021 (2025)
    Download Citation