[1] EbrahimZadeh M, Sokina I T. Infrared Coherent Sources Applications [M]. Berlin: Springer Science & Business Media, 2008.
[2] Abedin M N, Mlynczak M G, Refaat T F. Infrared detects overview in the shtwave infrared to farinfrared f CLARREO mission [C]Proc SPIE, 2010, 7808: 78080V1.
[3] R Bhargava. Infrared spectroscopic imaging: the next generation. Appl Spectroscopy, 66, 1091-1120(2012).
[4] D C Fernandez, R Bhargava, S M Hewitt, et al. Infrared spectroscopic imaging for histopathologic recognition. Nature Biotechnology, 23, 469-474(2005).
[5] A Travo, O Piot, R Wolthuis, et al. IR spectral imaging of secreted mucus: a promising new tool for the histopathological recognition of human colonic adenocarcinomas. Histopathology, 56, 921-931(2010).
[6] M Hermes, R B Morrish, L Huot, et al. Mid-IR hyperspectral imaging for label-free histopathologyand cytology. Journal of Optics, 20, 023002(2018).
[7] W Wang, S Liang, T He, et al. Estimating clear-sky all-wave net radiation from combined visible and shortwave infrared (VSWIR) and thermal infrared (TIR) remote sensing data. Remote Sensing of Environment, 167, 31-39(2015).
[8] J Li, U Parchatka, R Königstedt, et al. Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer. Optics Express, 20, 7590-7601(2012).
[9] J Houghton. Global warming. Reports on Progress in Physics, 68, 1343-1403(2005).
[10] D F Meer, H M A Werff, F J A Ruitenbeek, et al. Multi and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14, 112-128(2012).
[11] A A Gowen, C P O'donnell, P J Cullen, et al. Hyperspectral imaging – an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 18, 590-598(2007).
[12] J S Dam, P Tidemand-lichtenberg, C Pedersen. Room temperature mid-infrared single-photon spectral imaging. Nature Photonics, 6, 788-793(2012).
[13] L Høgstedt, J S Dam, A L Sahlberg, et al. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing. Optics Letters, 39, 5321-5324(2014).
[14] P Kumar. Quantum frequency conversion. Optics Letters, 15, 1476-1478(1990).
[15] M A Albota, F N C Wong. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Optics Letters, 29, 1449-1451(2004).
[16] Boyd R W. Nonlinear Optics [M]. 3rd ed. Amsterdam: Elsevier, 2008.
[17] R Demur, R Garioud, A Grisard, et al. Near-infrared to visible upconversion imaging using a broadband pump laser. Optics Express, 26, 13252-13263(2018).
[18] Z Ge, C Yang, Y H Li, et al. Up-conversion detection of mid-infrared light carrying orbital angular momentum. Chinese Physics B, 31, 104210(2022).
[19] Z Y Zhou, Y Li, D S Ding, et al. Orbital angular momentum photonic quantum interface. Light: Science & Applications, 5, e16019(2016).
[20] J S Pelc, L Ma, C R Phillips, et al. Long-wavelength-pumped upconversion single-photon detector at 1550 nm performance and noise analysis. Optics Express, 19, 21445-21456(2011).
[21] P S Kuo, J S Pelc, O Slattery, et al. Reducing noise in single-photon-level frequency conversion. Optics Letters, 38, 1310-1312(2013).
[22] T V Leent, M Bock, R Garthoff, et al. Long-distance distribution of atom-photon entanglement at telecom wavelength. Physical Review Letters, 124, 010510(2020).
[23] C Wang, C Langrock, A Marandi, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).
[24] K Huang, Y Wang, J Fang, et al. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Research, 9, 259-265(2021).
[25] H Dong, H Pan, Y Li, et al. Efficient single-photon frequency upconversion at with ultralow background counts. Applied Physics Letters, 93, 071101(2008).
[26] G L Shentu, J S Pelc, X D Wang, et al. Ultralow noise up-conversion detector and spectrometer for the telecom band. Optics Express, 21, 13986-13991(2013).
[27] A Barh, P Tidemand-lichtenberg, C Pedersen. Thermal noise in mid-infrared broadbandupconversion detectors. Optics Express, 26, 3249-3259(2018).
[28] D K Choge, H X Chen, Y B Xu, et al. Broadening of the sum-frequency phase-matching bandwidth by temperature gradient in MgO: PPLN. Applied Optics, 57, 5459-5463(2018).
[29] H Suchowski, G Porat, A Arie. Adiabatic processes in frequency conversion. Laser Photonics Review, 8, 333-367(2014).
[30] A Barh, C Pedersen, P Tidemand-lichtenberg. Ultra-broadband mid-wave-IR upconversion detection. Optics Letters, 42, 1504-1507(2017).
[31] H Suchowski, D Oron, A Arie, et al. Geometrical representation of sum frequency generation and adiabatic frequency conversion. Physical Review A, 78, 063821(2008).
[32] S Junaid, S C Kumar, M Mathez, et al. Video-rate, mid-infrared hyperspectral upconversion imaging. Optica, 6, 702-708(2009).
[33] P J Rodrigo, L Høgstedt, S M M Friis, et al. Room-temperature, high-SNR upconversion spectrometer in the 6–12 μm region. Laser Photonics Reviews, 15, 2000443(2021).
[34] M Mrejen, Y Erlich, A Levanon, et al. Multicolor time-resolved upconversion imaging by adiabatic sum frequency conversion. Laser Photonics Reviews, 14, 2000040(2020).
[35] H Maestre, A J Torregrosa, C R Fernández-pousa, et al. IR-to-visible image upconverter under nonlinear crystal thermal gradient operation. Optics Express, 26, 1133-1144(2018).
[36] K Huang, J Fang, M Yan, et al. Wide-field mid-infrared single-photon upconversion imaging. Nature Communications, 13, 1077(2022).
[37] M Mancinelli, A Trenti, S Piccione, et al. Mid-infrared coincidence measurements on twin photons at room temperature. Nature Communications, 8, 15184(2017).
[38] S Liu, C Yang, Z Xu, et al. High-dimensional quantum frequency converter. Physical Review A, 101, 012339(2020).
[39] S Tanzilli, W Tittel, M Halder, et al. A photonic quantum information interface. Nature, 437, 116-120(2005).
[40] Y H Li, W T Fang, Z Y Zhou, et al. Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip. Optics Express, 26, 28429-28440(2018).
[41] M Bock, P Eich, S Kucera, et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nature Communications, 9, 1998(2018).
[42] Z Y Zhou, S L Liu, Y Li, et al. Orbital angular momentum-entanglement frequency transducer. Physical Review Letters, 117, 103601(2016).
[43] T V Leent, M Bock, F Fertig, et al. Entangling single atoms over 33 km telecom fibre. Nature, 607, 69(2022).
[44] X D Qiu, S Lif, W H Zhang, et al. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica, 5, 208-212(2018).
[45] S K Liu, C Yang, S L Liu, et al. Up-conversion imaging processingwith field-of-view and edge enhancement. Physical Review Applied, 11, 044013(2019).
[46] Y Wang, J Fang, T Zheng, et al. Mid-infrared single-photon edge enhanced imaging based on nonlinear vortex filtering. Laser Photonics Reviews, 15, 2100189(2021).
[47] K E Jahromi, Q Pan, L Høgstedt, et al. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing. Optics Express, 27, 24469-24480(2019).
[48] M Widarsson, M Henriksson, L Barrett, et al. Room temperature photon-counting lidar at 3 μm. Applied Optics, 61, 884-889(2022).
[49] A C Gray, S A Berry, L G Carpenter, et al. Upconversion detection of 1.25 Gb/s mid-infrared telecommunications using a silicon avalanche photodiode. Optics Express, 28, 34279-34289(2020).
[50] C Pedersen, E Karamehmedović, J S Dam, et al. Enhanced 2D-image upconversion using solidstate lasers. Optics Express, 17, 20885-20890(2009).
[51] Y Cai, Y Chen, X Xin, et al. Mid-infrared single-photon upconversion spectroscopy based on temporal-spectral quantum correlation. Photonics Research, 10, 2614-2621(2022).
[52] S Mukamel, M Freyberger, W Schleich, et al. Roadmap on quantum light spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 072002(2020).
[53] G B Lemos, V Borish, G D Cole, et al. Quantum imaging with undetected photons. Nature, 512, 409(2014).
[54] M V Chekhova, Z Y Ou. Nonlinear interferometers in quantum optics. Advances in Optics and Photonics, 8, 104-155(2016).
[55] W Z Li, C Yang, Z Y Zhou, et al. Harmonics-assisted optical phase amplifier. Light: Science & Applications, 11, 312(2022).