[1] C. Abbafati, K.M. Abbas, M. Abbasi, M. Abbasifard, M. Abbasi-Kangevari et al., Collaborators global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 1204–1222 (2020).
[2] R. Gheno, J.M. Cepparo, C.E. Rosca, A. Cotten, Musculoskeletal disorders in the elderly. J. Clin. Imag. Sci. 2, 39 (2012).
[3] R. Buchbinder, C. Maher, I.A. Harris, Setting the research agenda for improving health care in musculoskeletal disorders. Nat. Rev. Rheumatol. 11, 597–605 (2015).
[4] A. Cieza, K. Causey, K. Kamenov, S.W. Hanson, S. Chatterji et al., Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 2006–2017 (2021).
[5] S. Chatterji, J. Byles, D. Cutler, T. Seeman, E. Verdes, Health, functioning, and disability in older adults: present status and future implications. Lancet 385, 563–575 (2015).
[6] J.E. Morley, Pharmacologic options for the treatment of sarcopenia. Calcif. Tissue Int. 98, 319–333 (2016).
[7] K.N. Tu, J.D. Lie, C.K.V. Wan, M. Cameron, A.G. Austel et al., Osteoporosis: a review of treatment options. P&T 43, 92–104 (2018)
[8] W. Zhang, H. Ouyang, C.R. Dass, J. Xu, Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4, 15040 (2016).
[9] J. Huang, Y. Chen, C. Tang, Y. Fei, H. Wu et al., The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell. Mol. Life Sci. 76, 505–521 (2019).
[10] M. Stephenson, W. Grayson, Recent advances in bioreactors for cell-based therapies. [version 1; peer review: 2 approved]. F1000Research 7 (F1000 Faculty Rev):517 (2018).
[11] J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).
[12] J. Ye, C. Xie, C. Wang, J. Huang, Z. Yin et al., Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact. Mater. 6, 4096–4109 (2021).
[13] C. Murphy, J. Withrow, M. Hunter, Y. Liu, Y.L. Tang et al., Emerging role of extracellular vesicles in musculoskeletal diseases. Mol. Aspects Med. 60, 123–128 (2018).
[14] X. Yao, W. Wei, X. Wang, C. Li, M. Björklund et al., Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 224, 119492 (2019).
[15] C.H. Evans, J. Huard, Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol. 11, 234–242 (2015).
[16] C.H. Evans, P.D. Robbins, Genetically augmented tissue engineering of the musculoskeletal system. Clin. Orthop. Relat. Res. (1999).
[17] C. Evans, Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. Int. Orthop. 38, 1761–1769 (2014).
[18] G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020).
[19] E. Basad, B. Ishaque, G. Bachmann, H. Stürz, J. Steinmeyer, Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg. Sports Traumatol. Arthrosc. 18, 519–527 (2010).
[20] B.J. Huang, J.C. Hu, K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98, 1–22 (2016).
[21] D.C. Carneiro, L.T. Araújo, G.C. Santos, P.K.F. Damasceno, J.L. Vieira et al., Clinical trials with mesenchymal stem cell therapies for osteoarthritis: challenges in the regeneration of articular cartilage. Int. J. Mol. Sci. 24, 9939 (2023).
[22] K. Čamernik, A. Barlič, M. Drobnič, J. Marc, M. Jeras et al., Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev. Rep. 14, 346–369 (2018).
[23] H.I.M.F.L. Pas, M.H. Moen, H.J. Haisma, M. Winters, No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br. J. Sports Med. 51, 996–1002 (2017).
[24] B.J. Nelson, S. Pané, Delivering drugs with microrobots biomedical microrobots could overcome current challenges in targeted therapies. Science 382, 1120–1122 (2023).
[25] M. Wan, H. Chen, Q. Wang, Q. Niu, P. Xu et al., Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10, 966 (2019).
[26] X. Ma, X. Wang, K. Hahn, S. Sánchez, Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016).
[27] S. Gao, J. Hou, J. Zeng, J.J. Richardson, Z. Gu et al., Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv. Funct. Mater. 29, 1808900 (2019).
[28] A.C. Hortelão, R. Carrascosa, N. Murillo-Cremaes, T. Patiño, S. Sánchez, Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13, 429–439 (2019).
[29] M. Hansen-Bruhn, B.E. de Ávila, M. Beltrán-Gastélum, J. Zhao, D.E. Ramírez-Herrera et al., Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57, 2657–2661 (2018).
[30] Y. Shen, W. Zhang, G. Li, P. Ning, Z. Li et al., Adaptive control of nanomotor swarms for magnetic-field-programmed cancer cell destruction. ACS Nano 15, 20020–20031 (2021).
[31] R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10, 839–844 (2016).
[32] M. Ussia, M. Urso, S. Kment, T. Fialova, K. Klima et al., Light-propelled nanorobots for facial titanium implants biofilms removal. Small 18, e2200708 (2022).
[33] Z. Cong, S. Tang, L. Xie, M. Yang, Y. Li et al., Magnetic-powered Janus cell robots loaded with oncolytic adenovirus for active and targeted virotherapy of bladder cancer. Adv. Mater. 34, e2201042 (2022).
[34] S. Ahmed, D.T. Gentekos, C.A. Fink, T.E. Mallouk, Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8, 11053–11060 (2014).
[35] X. Yi, H. Zhou, Y. Chao, S. Xiong, J. Zhong et al., Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Sci. Adv. 6, eaba3546 (2020).
[36] D. Blackiston, E. Lederer, S. Kriegman, S. Garnier, J. Bongard et al., A cellular platform for the development of synthetic living machines. Sci. Robot. 6, eabf1571 (2021).
[37] O. Felfoul, M. Mohammadi, S. Taherkhani, D. de Lanauze, Y. Zhong Xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).
[38] H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit et al., Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327–337 (2018).
[39] B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).
[40] H. Mu, C. Liu, Q. Zhang, H. Meng, S. Yu et al., Magnetic-driven hydrogel microrobots selectively enhance synthetic lethality in MTAP-deleted osteosarcoma. Front. Bioeng. Biotechnol. 10, 911455 (2022).
[41] C. Xu, Y. Jiang, H. Wang, Y. Zhang, Y. Ye et al., Arthritic microenvironment actuated nanomotors for active rheumatoid arthritis therapy. Adv. Sci. 10, e2204881 (2023).
[42] G.-Z. Yang, J. Bellingham, P.E. Dupont, P. Fischer, L. Floridi et al., The grand challenges of Science Robotics. Sci. Robot. 3, eaar7650 (2018).
[43] Y. Alapan, O. Yasa, B. Yigit, I.C. Yasa, P. Erkoc et al., Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019).
[44] Q. Wang, L. Zhang, External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15, 149–174 (2021).
[45] Q. Wang, J. Zhang, J. Yu, J. Lang, Z. Lyu et al., Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines. ACS Nano 17, 13081–13109 (2023).
[46] F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022).
[47] F. Sylos-Labini, M. Zago, P.A. Guertin, F. Lacquaniti, Y.P. Ivanenko, Muscle coordination and locomotion in humans. Curr. Pharm. Des. 23, 1821–1833 (2017).
[48] A. Oryan, S. Sahvieh, Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003–1011 (2017).
[49] S. Roberts, P. Colombier, A. Sowman, C. Mennan, J.H.D. Rölfing et al., Ageing in the musculoskeletal system. Acta Orthop. 87, 15–25 (2016).
[50] D. Goltzman, The aging skeleton, in Advances in experimental medicine and biology. ed. by J.S. Rhim, A. Dritschilo, R. Kremer (Springer International Publishing, Cham, 2019), pp.153–160.
[51] R. Sheng, M. Cao, M. Song, M. Wang, Y. Zhang et al., Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J. Orthop. Translat. 43, 36–46 (2023).
[52] B. Kirk, J. Feehan, G. Lombardi, G. Duque, Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep. 18, 388–400 (2020).
[53] GBD 2016 Disease and injury incidence and prevalence collaborators, global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390, pp. 1211–1259 (2017).
[54] D.J. Hunter, S. Bierma-Zeinstra, Osteoarthritis. Lancet 393, 1745–1759 (2019).
[55] M. Ondrésik, F.R. Azevedo Maia, A. da Silva Morais, A.C. Gertrudes, A.H. Dias Bacelar et al., Management of knee osteoarthritis. Current status and future trends. Biotechnol. Bioeng. 114, 717–739 (2017).
[56] H. Madry, Surgical therapy in osteoarthritis. Osteoarthr. Cartil. 30, 1019–1034 (2022).
[57] B.R. Freedman, D.J. Mooney, E. Weber, Advances toward transformative therapies for tendon diseases. Sci. Transl. Med. 14, eabl814 (2022).
[58] G. Nourissat, F. Berenbaum, D. Duprez, Tendon injury: from biology to tendon repair. Nat. Rev. Rheumatol. 11, 223–233 (2015).
[59] J.L. Cook, C. Purdam, Is compressive load a factor in the development of tendinopathy? Br. J. Phys. Med. 46, 163–168 (2012).
[60] F. Abat, H. Alfredson, M. Cucchiarini, H. Madry, A. Marmotti et al., Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part II: treatment options. J. Exp. Orthop. 5, 38 (2018).
[61] F. Oliva, D. Barisani, A. Grasso, N. Maffulli, Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur. Cell. Mater. 21, 548–557 (2011).
[62] G.-C. Dai, H. Wang, Z. Ming, P.-P. Lu, Y.-J. Li et al., Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: a new candidate marker for aging. Ageing Res. Rev. 95, 102215 (2024).
[63] T.S.O. Sleeswijk Visser, A.C. van der Vlist, R.F. van Oosterom, P. van Veldhoven, J.A.N. Verhaar et al., Impact of chronic Achilles tendinopathy on health-related quality of life, work performance, healthcare utilisation and costs. BMJ Open Sport Exerc. Med. 7, e001023 (2021).
[64] A.C. Colvin, N. Egorova, A.K. Harrison, A. Moskowitz, E.L. Flatow, National trends in rotator cuff repair. J. Bone Jt. Surg. Am. 94, 227–233 (2012).
[65] S.A. Rodeo, Biologic augmentation of rotator cuff tendon repair. J. Shoulder Elbow Surg. 16, S191–S197 (2007).
[66] D. Goutallier, J.-M. Postel, P. Gleyze, P. Leguilloux, S. Van, Driessche Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elb. Surg. 12, 550–554 (2003).
[67] Z. Wang, L. Xiang, F. Lin, Y. Tang, L. Deng et al., A biomaterial-based hedging immune strategy for scarless tendon healing. Adv. Mater. 35, 2200789 (2023).
[68] G.A. Rodan, T.J. Martin, Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).
[69] W. Chen, H. Lv, S. Liu, B. Liu, Y. Zhu et al., National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals. Lancet Glob. Health 5, e807–e817 (2017).
[70] W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017).
[71] Q. Wang, J. Yan, J. Yang, B. Li, Nanomaterials promise better bone repair. Mater. Today 19, 451–463 (2016).
[72] M.A.A. Mahdy, Skeletal muscle fibrosis: an overview. Cell Tissue Res. 375, 575–588 (2019).
[73] B.T. Corona, J.C. Rivera, J.G. Owens, J.C. Wenke, C.R. Rathbone, Volumetric muscle loss leads to permanent disability following extremity trauma. J. Rehabil. Res. Dev. 52, 785–792 (2015).
[74] F. Relaix, P.S. Zammit, Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139, 2845–2856 (2012).
[75] A. Aurora, J.L. Roe, B.T. Corona, T.J. Walters, An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 67, 393–407 (2015).
[76] K. Garg, C.L. Ward, B.J. Hurtgen, J.M. Wilken, D.J. Stinner et al., Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J. Orthop. Res. 33, 40–46 (2015).
[77] J. Larouche, S.M. Greising, B.T. Corona, C.A. Aguilar, Robust inflammatory and fibrotic signaling following volumetric muscle loss: a barrier to muscle regeneration. Cell Death Dis. 9, 409 (2018).
[78] B.F. Grogan, J.R. Hsu, Volumetric muscle loss. Am. Acad. Orthop. Surg. 19, S35–S37 (2011).
[79] B.J. Hurtgen, C.L. Ward, C.M. Leopold Wager, K. Garg, S.M. Goldman et al., Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma. Physiol. Rep. 5, e13362 (2017).
[80] M.T.A. Li, N.J. Willett, B.A. Uhrig, R.E. Guldberg, G.L. Warren, Functional analysis of limb recovery following autograft treatment of volumetric muscle loss in the quadriceps femoris. J. Biomech. 47, 2013–2021 (2014).
[81] C.H. Evans, Advances in regenerative orthopedics. Mayo Clin. Proc. 88, 1323–1339 (2013).
[82] T. Gonzalez-Fernandez, P. Sikorski, J.K. Leach, Bio-instructive materials for musculoskeletal regeneration. Acta Biomater. 96, 20–34 (2019).
[83] H.-G. Ha, G. Han, S. Lee, K. Nam, S. Joung et al., Robot-patient registration for optical tracker-free robotic fracture reduction surgery. Comput. Methods Programs Biomed. 228, 107239 (2023).
[84] J. Liu, D. Saul, K.O. Böker, J. Ernst, W. Lehman et al., Current methods for skeletal muscle tissue repair and regeneration. BioMed Res. Int. 2018, 1984879 (2018).
[85] J. Yuan, F. Xin, W. Jiang, Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell. Physiol. Biochem. 46, 1581–1594 (2018).
[86] F. Shang, L. Ming, Z. Zhou, Y. Yu, J. Sun et al., The effect of licochalcone A on cell-aggregates ECM secretion and osteogenic differentiation during bone formation in metaphyseal defects in ovariectomized rats. Biomaterials 35, 2789–2797 (2014).
[87] Y. Liu, L. Ming, H. Luo, W. Liu, Y. Zhang et al., Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials 34, 9998–10006 (2013).
[88] P. Potdar, J. Sutar, Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues. J. Stem Cells Regen. Med. 6, 26–35 (2010).
[89] A. Marmotti, G.M. Peretti, S. Mattia, L. Mangiavini, L. de Girolamo et al., Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair-an in vitro study. Stem Cells Int. 2018, 9048237 (2018).
[90] J.H. Yea, T.S. Bae, B.J. Kim, Y.W. Cho, C.H. Jo, Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater. 114, 104–116 (2020).
[91] D.R. Kwon, G.Y. Park, Y.S. Moon, S.C. Lee, Therapeutic effects of umbilical cord blood-derived mesenchymal stem cells combined with polydeoxyribonucleotides on full-thickness rotator cuff tendon tear in a rabbit model. Cell Transplant. 27, 1613–1622 (2018).
[92] B.-M. Seo, M. Miura, S. Gronthos, P. Mark Bartold, S. Batouli et al., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149–155 (2004).
[93] P.D. Potdar, Y.D. Jethmalani, Human dental pulp stem cells: applications in future regenerative medicine. World J. Stem Cells 7, 839–851 (2015).
[94] C. Chen, Q. Shi, M. Li, Y. Chen, T. Zhang et al., Engineering an enthesis-like graft for rotator cuff repair: an approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact. Mater. 16, 451–471 (2022).
[95] K.I. Kim, M.C. Lee, J.H. Lee, Y.W. Moon, W.S. Lee et al., Clinical efficacy and safety of the intra-articular injection of autologous adipose-derived mesenchymal stem cells for knee osteoarthritis: a phase III, randomized, double-blind, placebo-controlled trial. Am. J. Sports Med. 51, 2243–2253 (2023).
[96] J.R. Garza, R.E. Campbell, F.P. Tjoumakaris, K.B. Freedman, L.S. Miller et al., Clinical efficacy of intra-articular mesenchymal stromal cells for the treatment of knee osteoarthritis: a double-blinded prospective randomized controlled clinical trial. Am. J. Sports Med. 48, 588–598 (2020).
[97] W.S. Lee, H.J. Kim, K.I. Kim, G.B. Kim, W. Jin, Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl. Med. 8, 504–511 (2019).
[98] J.M. Lamo-Espinosa, G. Mora, J.F. Blanco, F. Granero-Moltó, J.M. Nuñez-Córdoba et al., Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J. Transl. Med. 14, 246 (2016).
[99] C.-F. Chen, C.-C. Hu, C.-T. Wu, H.-T.H. Wu, C.-S. Chang et al., Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: a phase I/II, randomized, active-control, single-blind, multiple-center clinical trial. Stem Cell Res. Ther. 12, 562 (2021).
[100] L. Lu, C. Dai, Z. Zhang, H. Du, S. Li et al., Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res. Ther. 10, 143 (2019).
[101] C.H. Jo, J.W. Chai, E.C. Jeong, S. Oh, P.S. Kim et al., Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-In-human trial. Stem Cells 36, 1441–1450 (2018).
[102] S. Toosi, H. Naderi-Meshkin, A. Moradi, M. Daliri, V. Moghimi et al., Scaphoid bone nonunions: clinical and functional outcomes of collagen/PGA scaffolds and cell-based therapy. ACS Biomater. Sci. Eng. 9, 1928–1939 (2023).
[103] F.G. Usuelli, M. Grassi, C. Maccario, M. Vigano’, L. Lanfranchi et al., Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg. Sports Traumatol. Arthrosc. 26, 2000–2010 (2018).
[104] R.G. Thomas, A.R. Unnithan, M.J. Moon, S.P. Surendran, T. Batgerel et al., Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells. Int. J. Biol. Macromol. 110, 465–471 (2018).
[105] G. Go, A. Yoo, H.W. Song, H.K. Min, S. Zheng et al., Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano 15, 1059–1076 (2021).
[106] G. Go, S.G. Jeong, A. Yoo, J. Han, B. Kang et al., Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5, eaay626 (2020).
[107] C. Xu, S. Wang, H. Wang, K. Liu, S. Zhang et al., Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21, 1982–1991 (2021).
[108] A. Liu, Q. Wang, Z. Zhao, R. Wu, M. Wang et al., Nitric oxide nanomotor driving exosomes-loaded microneedles for Achilles tendinopathy healing. ACS Nano 15, 13339–13350 (2021).
[109] G. Go, J. Han, J. Zhen, S. Zheng, A. Yoo et al., A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv. Healthc. Mater. 6, 201601378 (2017).
[110] W.-C. Lo, C.-H. Fan, Y.-J. Ho, C.-W. Lin, C.-K. Yeh, Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc. Natl. Acad. Sci. U.S.A. 118, e2023188118 (2021).
[111] Q. Wang, Q. Wang, Z. Ning, K.F. Chan, J. Jiang et al., Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci. Robot. 9, eadh1978 (2024).
[112] Q. Wang, K.F. Chan, K. Schweizer, X. Du, D. Jin et al., Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7, eabe5914 (2021).
[113] H. Yu, Y. Huang, L. Yang, Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res. Rev. 80, 101684 (2022).
[114] B. Chen, Y. Li, X. Zhang, F. Liu, Y. Liu et al., An efficient synthesis of ferumoxytol induced by alternating-current magnetic field. Mater. Lett. 170, 93–96 (2016).
[115] J.P. Bullivant, S. Zhao, B.J. Willenberg, B. Kozissnik, C.D. Batich et al., Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int. J. Mol. Sci. 14, 17501–17510 (2013).
[116] G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz, U. Gunduz, Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res. 14, 964 (2012).
[117] C. Guo, R.A. Gemeinhart, Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. Eur. J. Pharm. Biopharm. 70, 597–604 (2008).
[118] E. Vey, C. Rodger, J. Booth, M. Claybourn, A.F. Miller et al., Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym. Degrad. Stab. 96, 1882–1889 (2011).
[119] U. Akgun, B. Kocaoglu, S. Ergun, M. Karahan, M. Turkmen, The effect of environmental pH change on bovine articular cartilage metabolism: implications for the use of buffered solution during arthroscopy? Knee Surg. Phys. Traumatol. Arthrosc. 22, 2843–2848 (2014).
[120] K. Lee, G. Go, A. Yoo, B. Kang, E. Choi et al., Wearable fixation device for a magnetically controllable therapeutic agent carrier: application to cartilage repair. Pharmaceutics 12, 593 (2020).
[121] L.C. Barnsley, D. Carugo, J. Owen, E. Stride, Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications. Phys. Med. Biol. 60, 8303–8327 (2015).
[122] G. Go, A. Yoo, S. Kim, J.K. Seon, C.S. Kim et al., Magnetization-switchable implant system to target delivery of stem cell-loaded bioactive polymeric microcarriers. Adv. Healthc. Mater. 10, e2100068 (2021).
[123] J. Lee, S. Lee, S.J. Huh, B.J. Kang, H. Shin, Directed regeneration of osteochondral tissue by hierarchical assembly of spatially organized composite spheroids. Adv. Sci. 9, e2103525 (2022).
[124] L. Zhou, V.O. Gjvm, J. Malda, M.J. Stoddart, Y. Lai et al., Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv. Healthc. Mater. 9, e2001008 (2020).
[125] J. Lee, H.W. Song, K.T. Nguyen, S. Kim, M. Nan et al., Magnetically actuated microscaffold with controllable magnetization and morphology for regeneration of osteochondral tissue. Micromachines 14, 434 (2023).
[126] B.D. Smith, D.A. Grande, The Current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 11, 213–222 (2015).
[127] P. Duan, Z. Pan, L. Cao, Y. He, H. Wang et al., The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J. Biomed. Mater. Res. A 102, 180–192 (2014).
[128] X.P. Wang, X.H. Qin, C.Z. Hu, A. Terzopoulou, X.Z. Chen et al., 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28, 1804107 (2018).
[129] U. Bozuyuk, O. Yasa, I.C. Yasa, H. Ceylan, S. Kizilel et al., Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 12, 9617–9625 (2018).
[130] R. Pankov, K.M. Yamada, Fibronectin at a glance. J. Cell Sci. 115, 3861–3863 (2002).
[131] M. Ma, F. Zou, B. Abudureheman, F. Han, G. Xu et al., Magnetic microcarriers with accurate localization and proliferation of mesenchymal stem cell for cartilage defects repairing. ACS Nano 17, 6373–6386 (2023).
[132] R. Calafiore, Alginate microcapsules for pancreatic islet cell graft immunoprotection: struggle and progress towards the final cure for type 1 diabetes mellitus. Expert Opin. Biol. Ther. 3, 201–205 (2003).
[133] J. Zhang, B.A. Grzybowski, S. Granick, Janus particle synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017).
[134] Z. Chen, X.X. Song, X.L. Mu, J.K. Zhang, U.K. Cheang, 2D magnetic microswimmers for targeted cell transport and 3D cell culture structure construction. ACS Appl. Mater. Interfaces 15, 8840–8853 (2023).
[135] K. Morozov, Y. Mirzae, O. Kenneth, A. Leshansky, Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Phys. Rev. Fluids 2, 29 (2017).
[136] S.-W. Choi, Y. Zhang, Y.-C. Yeh, A. Lake Wooten, Y. Xia, Biodegradable porous beads and their potential applications in regenerative medicine. J. Mater. Chem. 22, 11442 (2012).
[137] Y. Mirzae, O. Dubrovski, O. Kenneth, K.I. Morozov, A.M. Leshansky, Geometric constraints and optimization in externally driven propulsion. Sci. Robot. 3, eaas8713 (2018).
[138] T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang et al., Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 16, e1906908 (2020).
[139] G.S. Firestein, I.B. McInnes, Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196 (2017).
[140] J.S. Smolen, D. Aletaha, I.B. McInnes, Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).
[141] L.J.S. da Fonseca, V. Nunes-Souza, M.O.F. Goulart, L.A. Rabelo, Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies. Oxid. Med. Cell. Longev. 2019, 7536805 (2019).
[142] C.M. Weyand, Y. Shen, J.J. Goronzy, Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic. Biol. Med. 125, 36–43 (2018).
[143] I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki et al., Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007).
[144] Y. Wu, M. Yuan, J. Song, X. Chen, H. Yang, Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 13, 8505–8511 (2019).
[145] X. Xu, X. He, J. Liu, J. Qin, J. Ye et al., Protective effects of hydrogen-rich saline against renal ischemia-reperfusion injury by increased expression of heme oxygenase-1 in aged rats. Int. J. Clin. Exp. Pathol. 12, 1488–1496 (2019), PMID: 31933966; PMCID: PMC6947057
[146] K. Liu, J. Ou, S. Wang, J. Gao, L. Liu et al., Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Appl. Mater. Today 20, 100694 (2020).
[147] J. Meng, P. Yu, H. Jiang, T. Yuan, N. Liu et al., Molecular hydrogen decelerates rheumatoid arthritis progression through inhibition of oxidative stress. Am. J. Transl. Res. 8, 4472–4477 (2016), PMID: 27830032; PMCID: PMC5095341
[148] H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).
[149] T. Wu, Y. Liu, Y. Cao, Z. Liu, Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv. Mater. 34, e2110364 (2022).
[150] L. Zhang, Q.-C. Yang, S. Wang, Y. Xiao, S.-C. Wan et al., Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv. Mater. 34, e2108174 (2022).
[151] D. Tang, R.S. Tare, L.-Y. Yang, D.F. Williams, K.-L. Ou et al., Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83, 363–382 (2016).
[152] Y.-W. Zhang, M.-M. Cao, Y.-J. Li, P.-P. Lu, G.-C. Dai et al., Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J. Orthop. Translat. 37, 46–60 (2022).
[153] Y.-W. Zhang, M.-M. Cao, Y.-J. Li, G.-C. Dai, P.-P. Lu et al., The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit. Rev. Food Sci. Nutr. 63, 7510–7528 (2023).
[154] D. Cao, J.G. Martinez, E.S. Hara, E.W.H. Jager, Biohybrid variable-stiffness soft actuators that self-create bone. Adv. Mater. 34, e2107345 (2022).
[155] A.V. Singh, M.H. Dad Ansari, C.B. Dayan, J. Giltinan, S. Wang et al., Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials 219, 119394 (2019).
[156] A. Yamauchi, K. Yamauchi, New aspects of the structure of human scalp hair-II: Tubular structure and material flow property of the medulla. J. Cosmetic Sci. 69(1), 19–33 (2018), PMID: 29658875.
[157] C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010).
[158] Y. Deng, X. Liu, A. Xu, L. Wang, Z. Luo et al., Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int. J. Nanomedicine 10, 1425–1447 (2015).
[159] L.A. Goldsmith, H.P. Baden, The mechanical properties of hair I. the dynamic sonic modulus. J. Investig. Dermatol. 55(4), 256–259 (1970).
[160] A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
[161] I.C. Yasa, A.F. Tabak, O. Yasa, H. Ceylan, M. Sitti, 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv. Funct. Mater. 29, 1808992 (2019).
[162] A. Marino, C. Filippeschi, G.G. Genchi, V. Mattoli, B. Mazzolai et al., The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 10, 4304–4313 (2014).
[163] J. Li, X. Li, T. Luo, R. Wang, C. Liu et al., Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3, eaat8829 (2018).
[164] J. Li, L. Fan, Y. Li, T. Wei, C. Wang et al., Development of cell-carrying magnetic microrobots with bioactive nanostructured titanate surface for enhanced cell adhesion. Micromachines 12, 1572 (2021).
[165] S. Liu, Y. Zhu, H. Gao, P. Ge, K. Ren et al., One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity. Mater. Sci. Eng. C Mater. Biol. Appl. 88, 70–78 (2018).
[166] Y. Hu, J. Ran, Z. Zheng, Z. Jin, X. Chen et al., Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater. 71, 168–183 (2018).
[167] M.-J. Shen, C.-Y. Wang, D.-X. Hao, J.-X. Hao, Y.-F. Zhu et al., Multifunctional nanomachinery for enhancement of bone healing. Adv. Mater. 34, e2107924 (2022).
[168] W. Chaikittisilp, Y. Yamauchi, K. Ariga, Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials? Adv. Mater. 34, e2107212 (2022).
[169] B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/ nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33, e2002047 (2021).
[170] J. Li, W. Liu, T. Li, I. Rozen, J. Zhao et al., Swimming microrobot optical nanoscopy. Nano Lett. 16, 6604–6609 (2016).
[171] H. Hoppeler, M. Flück, Normal mammalian skeletal muscle and its phenotypic plasticity. J. Exp. Biol. 205, 2143–2152 (2002).
[172] M.M. Smoak, A.G. Mikos, Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater. Today Bio 7, 100069 (2020).
[173] Y. Jin, D. Shahriari, E.J. Jeon, S. Park, Y.S. Choi et al., Functional skeletal muscle regeneration with thermally drawn porous fibers and reprogrammed muscle progenitors for volumetric muscle injury. Adv. Mater. 33, e2007946 (2021).
[174] I. Eugenis, D. Wu, T.A. Rando, Cells, scaffolds, and bioactive factors: engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 278, 121173 (2021).
[175] S. Han, S.H. Cruz, S. Park, S.R. Shin, Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 10, 48 (2023).
[176] W. Zhuge, X. Ding, W. Zhang, D. Zhang, H. Wang et al., Microfluidic generation of helical micromotors for muscle tissue engineering. Chem. Eng. J. 447, 137455 (2022).
[177] Y. Yu, J. Guo, Y. Wang, C. Shao, Y. Wang et al., Bioinspired helical micromotors as dynamic cell microcarriers. ACS Appl. Mater. Interfaces 12, 16097–16103 (2020).
[178] L.T. Denes, L.A. Riley, J.R. Mijares, J.D. Arboleda, K. McKee et al., Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skelet. Muscle 9, 17 (2019).
[179] T. Asano, T. Ishizuka, K. Morishima, H. Yawo, Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci. Rep. 5, 8317 (2015).
[180] T. Asano, H. Igarashi, T. Ishizuka, H. Yawo, Organelle optogenetics: direct manipulation of intracellular Ca2+ dynamics by light. Front. Neurosci. 12, 561 (2018).
[181] L. Liu, J. Wu, B. Chen, J. Gao, T. Li et al., Magnetically actuated biohybrid microswimmers for precise photothermal muscle contraction. ACS Nano 16, 6515–6526 (2022).
[182] T. Bito, M. Bito, Y. Asai, S. Takenaka, Y. Yabuta et al., Characterization and quantitation of vitamin B12 compounds in various Chlorella supplements. J. Agric. Food Chem. 64, 8516–8524 (2016).
[183] D. Chen, Q. Tang, X. Li, X. Zhou, J. Zang et al., Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells. Int. J. Nanomedicine 7, 4973–4982 (2012).
[184] J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng et al., Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 80, 333–341 (2007).
[185] M. Abboud, S. Youssef, J. Podlecki, R. Habchi, G. Germanos et al., Superparamagnetic Fe3O4 nanoparticles, synthesis and surface modification. Mater. Sci. Semicond. Process. 39, 641–648 (2015).
[186] K.G. Silbernagel, R. Thomeé, B.I. Eriksson, J. Karlsson, Continued sports activity, using a pain-monitoring model, during rehabilitation in patients with Achilles tendinopathy. Am. J. Phys. Med. 35, 897–906 (2007).
[187] S. de Jonge, C. van den Berg, R.J. de Vos, H.J. van der Heide, A. Weir et al., Incidence of midportion Achilles tendinopathy in the general population. Br. J. Sports Med. 45, 1026–1028 (2011).
[188] K. Lee, Y. Xue, J. Lee, H.-J. Kim, Y. Liu et al., A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv. Funct. Mater. 30, 2000086 (2020).
[189] N.L. Millar, G.A.C. Murrell, I.B. McInnes, Inflammatory mechanisms in tendinopathy–towards translation. Nat. Rev. Rheumatol. 13, 110–122 (2017).
[190] C.J. Pearce, M. Ismail, J.D. Calder, Is apoptosis the cause of noninsertional Achilles tendinopathy? Am. J. Sports Med. 37, 2440–2444 (2009).
[191] A.A. Solovev, Y. Mei, E. Bermúdez Ureña, G. Huang, O.G. Schmidt, Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009).
[192] M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 4, 4845–4851 (2010).
[193] W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk et al., Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128, 14881–14888 (2006).
[194] H. Zhang, W. Duan, L. Liu, A. Sen, Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135, 15734–15737 (2013).
[195] J. Ou, H. Tian, J. Wu, J. Gao, J. Jiang et al., MnO2-based nanomotors with active Fenton-like Mn2+ delivery for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces 13, 38050–38060 (2021).
[196] J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh et al., Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).
[197] A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009).
[198] L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell et al., Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 3 (2009).
[199] S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4, eaav4317 (2019).
[200] X.-Z. Chen, J.-H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis et al., Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Mater. Horiz. 6, 1512–1516 (2019).
[201] C.E. Touw, B. Nemeth, A.M.R. Rondon, R.A. van Adrichem, T. Lisman et al., Lower-leg injury and knee arthroscopy have distinct effects on coagulation. Blood Adv. 6, 5232–5243 (2022).
[202] J. Ramos, C. Perrotta, G. Badariotti, G. Berenstein, Interventions for preventing venous thromboembolism in adults undergoing knee arthroscopy. Cochrane Database Syst. Rev. (2007).
[203] Y. Mohammed, C.E. Touw, B. Nemeth, R.A. van Adrichem, C.H. Borchers et al., Targeted proteomics for evaluating risk of venous thrombosis following traumatic lower-leg injury or knee arthroscopy. J. Thromb. Haemost. 20, 684–699 (2022).
[204] C.E. Touw, B. Nemeth, R.A. van Adrichem, I.B. Schipper, R.G.H.H. Nelissen et al., The influence of lower-leg injury and knee arthroscopy on natural anticoagulants and fibrinolysis. J. Thromb. Haemost. 21, 227–236 (2023).
[205] Q. Wang, X. Du, D. Jin, L. Zhang, Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604–616 (2022).
[206] N.A. Haq-Siddiqi, D. Britton, J. Kim, Montclare Protein-engineered biomaterials for cartilage therapeutics and repair. Adv. Drug Deliv. Rev. 192, 114647 (2023).
[207] S. Che, J. Zhang, F. Mou, X. Guo, J.E. Kauffman et al., Light-programmable assemblies of isotropic micromotors. Research 2022, 9816562 (2022).
[208] J. Liu, L. Li, C. Cao, Z. Feng, Y. Liu et al., Swarming multifunctional heater-thermometer nanorobots for precise feedback hyperthermia delivery. ACS Nano 17, 16731–16742 (2023).
[209] L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15, 141 (2023).
[210] M. Yang, X. Guo, F. Mou, J. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 123, 3944–3975 (2023).
[211] M. Yang, Y. Zhang, F. Mou, C. Cao, L. Yu et al., Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci. Adv. 9, eadk7251 (2023).
[212] R.C. Nordberg, G.A. Otarola, D. Wang, J.C. Hu, K.A. Athanasiou, Navigating regulatory pathways for translation of biologic cartilage repair products. Sci. Transl. Med. 14, eabp8163 (2022).