• Laser & Optoelectronics Progress
  • Vol. 61, Issue 18, 1812004 (2024)
Ruanzhao Guo1, Ke Wang1, Huiqin Wang1,*, Zhan Wang2..., Gang Zhen2, Yuan Li3 and Jiachen Li1|Show fewer author(s)
Author Affiliations
  • 1School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2Shaanxi Provincial Institute of Cultural Relics Protection, Xi'an 710075, Shaanxi, China
  • 3Xi'an Museum, Xi'an 710074, Shaanxi, China
  • show less
    DOI: 10.3788/LOP240448 Cite this Article Set citation alerts
    Ruanzhao Guo, Ke Wang, Huiqin Wang, Zhan Wang, Gang Zhen, Yuan Li, Jiachen Li. Anti-Disturbance Cross-Scene Multispectral Imaging Pigment Classification Method for Painted Cultural Relics[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1812004 Copy Citation Text show less
    References

    [1] Miliani C, Rosi F, Brunetti B G et al. In situ noninvasive study of artworks: the MOLAB multitechnique approach[J]. Accounts of Chemical Research, 43, 728-738(2010).

    [2] Zaffino C, Guglielmi V, Faraone S et al. Exploiting external reflection FTIR spectroscopy for the in situ identification of pigments and binders in illuminated manuscripts. Brochantite and posnjakite as a case study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1076-1085(2015).

    [3] Zhou W J, Li A Q, Chen Z K et al. Defect detection and analysis in murals using digital holography[J]. Chinese Journal of Lasers, 50, 1909001(2023).

    [4] Wang X P, Zhao H X, Li Q H et al. Relevant fundamental research of colored artworks by multispectral imaging technology[J]. Acta Optica Sinica, 35, 1030003(2015).

    [5] Gong M T, Feng P L. Preliminary study on the application of hyperspectral imaging in the classification of and identification Chinese traditional pigments classification: a case study of spectral angle mapper[J]. Sciences of Conservation and Archaeology, 26, 76-83(2014).

    [6] Wang G M, Liu Z Y. A composition analysis method of mixed pigments based on spectrum expression and independent component analysis[J]. Spectroscopy and Spectral Analysis, 35, 1682-1689(2015).

    [7] Liang J X, Wan X X. Non-destructive pigment identification method of ancient murals based on visible spectrum[J]. Spectroscopy and Spectral Analysis, 37, 2519-2526(2017).

    [8] Li J F, Wan X X. Non-destructive identification of mineral pigments in ancient murals by visible spectroscopy[J]. Spectroscopy and Spectral Analysis, 38, 200-204(2018).

    [9] Wang K, Wang H Q, Yin Y et al. Pigment spectral matching recognition method based on adaptive edit distance[J]. Laser & Optoelectronics Progress, 55, 113004(2018).

    [10] Wang Y N, Zhu D N, Wang H Q et al. Multispectral image classification of mural pigments based on convolutional neural network[J]. Laser & Optoelectronics Progress, 56, 221001(2019).

    [11] Cao P H, Lyu S Q, Wang W F et al. Extraction of mural paint loss regions based on spectral dimensionality reduction and Hu moment[J]. Journal of Graphics, 41, 930-938(2020).

    [12] Wei D Q, Wang H Q, Wang K et al. Pigment classification method of mural sparse multi-spectral image based on space spectrum joint feature[J]. Acta Photonica Sinica, 51, 0430002(2022).

    [13] Lu Y, Xu H S. Illumination spectrum estimation method based on single multispectral image[J]. Acta Optica Sinica, 42, 0733001(2022).

    [14] Cheng R J, Yang Y, Li L W et al. Lightweight residual network based on depthwise separable convolution for hyperspectral image classification[J]. Acta Optica Sinica, 43, 1228010(2023).

    [15] Chen S X, He Y F. Weighted joint sparse representation hyperspectral image classification based on spatial-spectral dictionary[J]. Acta Optica Sinica, 43, 0110002(2023).

    [16] Li W J, Wang Z J, Cui L. Improved CamShift tracking algorithm based on SIFT and perceptual hash[J]. Electronic Measurement Technology, 46, 184-192(2023).

    [17] Zhang Y X, Li W, Sun W D et al. Single-source domain expansion network for cross-scene hyperspectral image classification[J]. IEEE Transactions on Image Processing, 32, 1498-1512(2023).

    [18] Zhang H Y, Cisse M, Dauphin Y N et al. Mixup: beyond empirical risk minimization[EB/OL]. http://arxiv.org/abs/1710.09412v2

    [19] Zhou K Y, Yang Y X, Qiao Y et al. Domain generalization with MixStyle[EB/OL]. http://arxiv.org/abs/2104.02008v1

    [20] Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization[C], 1510-1519(2017).

    [21] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [22] Khosla P, Teterwak P, Wang C et al. Supervised contrastive learning[C], 18661-18673(2020).

    [23] Zhu J, Fang L Y, Ghamisi P. Deformable convolutional neural networks for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 15, 1254-1258(2018).

    [24] Wang W J, Dou S G, Jiang Z M et al. A fast dense spectral–spatial convolution network framework for hyperspectral images classification[J]. Remote Sensing, 10, 1068(2018).

    [25] Zhong Z L, Li J, Luo Z M et al. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 847-858(2018).

    [26] Roy S K, Manna S, Song T C et al. Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 7831-7843(2021).

    [27] Zhang X R, Shang S W, Tang X et al. Spectral partitioning residual network with spatial attention mechanism for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5507714(2021).

    [28] Santara A, Mani K, Hatwar P et al. BASS net: band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 5293-5301(2017).

    [29] Song W W, Li S T, Fang L Y et al. Hyperspectral image classification with deep feature fusion network[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 3173-3184(2018).

    [30] Fan L N. Sixteen arhats murals in Guanyin Pavilion of Dule Temple in Jixian County[J]. Art Research, 26-32(2021).

    Ruanzhao Guo, Ke Wang, Huiqin Wang, Zhan Wang, Gang Zhen, Yuan Li, Jiachen Li. Anti-Disturbance Cross-Scene Multispectral Imaging Pigment Classification Method for Painted Cultural Relics[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1812004
    Download Citation