• Nano-Micro Letters
  • Vol. 16, Issue 1, 120 (2024)
Dandan Chu1, Mengyang Zhao1,*, Shisong Rong2,**, Wonho Jhe3..., Xiaolu Cai4, Yi Xiao3, Wei Zhang1, Xingchen Geng1, Zhanrong Li1,***, Xingcai Zhang3,**** and Jingguo Li1,*****|Show fewer author(s)
Author Affiliations
  • 1Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, People’s Republic of China
  • 2Department of Ophthalmology, Mass Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA
  • 3School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
  • 4College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01322-7 Cite this Article
    Dandan Chu, Mengyang Zhao, Shisong Rong, Wonho Jhe, Xiaolu Cai, Yi Xiao, Wei Zhang, Xingchen Geng, Zhanrong Li, Xingcai Zhang, Jingguo Li. Dual-Atom Nanozyme Eye Drops Attenuate Inflammation and Break the Vicious Cycle in Dry Eye Disease[J]. Nano-Micro Letters, 2024, 16(1): 120 Copy Citation Text show less
    References

    [1] J.A. Clayton, Dry eye. N. Engl. J. Med. 378(23), 2212–2223 (2018).

    [2] F.E. Hakim, A.V. Farooq, Dry eye disease: An update in 2022. JAMA 327(5), 478–479 (2022).

    [3] K. Walter, What is dry eye disease? JAMA 328(1), 84 (2022).

    [4] D. Wirta, Update on dry eye disease. JAMA 327(23), 2355–2356 (2022).

    [5] S.H. Liu, I.J. Saldanha, A.G. Abraham, T. Rittiphairoj, S. Hauswirth et al., Topical corticosteroids for dry eye. Cochrane Database Syst. Rev. 10, CD015070 (2022).

    [6] S.C. Pflugfelder, C.S. de Paiva, The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology 124(11), S4–S13 (2017).

    [7] W. Ouyang, S. Wang, D. Yan, J. Wu, Y. Zhang et al., The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation. Signal Transduct. Target. Ther. 8, 371 (2023).

    [8] G.S. Shadel, T.L. Horvath, Mitochondrial ROS signaling in organismal homeostasis. Cell 163(3), 560–569 (2015).

    [9] Q. Zheng, L. Li, M. Liu, B. Huang, N. Zhang et al., In situ scavenging of mitochondrial ROS by anti-oxidative MitoQ/hyaluronic acid nanoparticles for environment-induced dry eye disease therapy. Chem. Eng. J. 398, 125621 (2020).

    [10] H.J. Forman, H. Zhang, Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    [11] R.C. Coll, A.A.B. Robertson, J.J. Chae, S.C. Higgins, R. Muñoz-Planillo et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    [12] K.C. Barnett, S. Li, K. Liang, J.P.-Y. Ting, A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186(11), 2288–2312 (2023).

    [13] K. Ciazynska, The activated inflammasome. Nat. Struct. Mol. Biol. 30, 125 (2023).

    [14] S.H. Baik, V.K. Ramanujan, C. Becker, S. Fett, D.M. Underhill et al., Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP3 inflammasome assembly and activation. Sci. Immunol. 8, eade7652 (2023).

    [15] S. Li, Z. Lu, Y. Huang, Y. Wang, Q. Jin et al., Anti-oxidative and anti-inflammatory micelles: break the dry eye vicious cycle. Adv. Sci. 9(17), e2200435 (2022).

    [16] M.K. Rhee, F.S. Mah, Inflammation in dry eye disease: How do we break the cycle? Ophthalmology 124(11), S14–S19 (2017).

    [17] R. Zhou, A.S. Yazdi, P. Menu, J. Tschopp, A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    [18] J. Tschopp, K. Schroder, NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    [19] L.K. Billingham, J.S. Stoolman, K. Vasan, A.E. Rodriguez, T.A. Poor et al., Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol. 23, 692–704 (2022).

    [20] X. Yu, P. Lan, X. Hou, Q. Han, N. Lu et al., HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J. Hepatol. 66(4), 693–702 (2017).

    [21] Y. Ruan, Y. Xiong, W. Fang, Q. Yu, Y. Mai et al., Highly sensitive curcumin-conjugated nanotheranostic platform for detecting amyloid-beta plaques by magnetic resonance imaging and reversing cognitive deficits of Alzheimer’s disease via NLRP3-inhibition. J. Nanobiotechnology 20, 322 (2022).

    [22] Y. Gan, G. Zhao, Z. Wang, X. Zhang, M.X. Wu et al., Bacterial membrane vesicles: physiological roles, infection immunology, and applications. Adv. Sci. 10(25), e2301357 (2023).

    [23] H. Xiang, W. Feng, Y. Chen, Single-atom catalysts in catalytic biomedicine. Adv. Mater. 32(8), e1905994 (2020).

    [24] J. Li, S. Song, J. Meng, L. Tan, X. Liu et al., 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143(37), 15427–15439 (2021).

    [25] H. Gao, M. Sun, Y. Duan, Y. Cai, H. Dai et al., Controllable synthesis of lignin nanoparticles with antibacterial activity and analysis of its antibacterial mechanism. Int. J. Biol. Macromol. 246, 125596 (2023).

    [26] Q. Qu, W. Cheng, X. Zhang, A. Zhou, Y. Deng et al., Multicompartmental microcapsules for enzymatic cascade reactions prepared through gas shearing and surface gelation. Biomacromol 23(9), 3572–3581 (2022).

    [27] H. Rashidzadeh, F. Seidi, M. Ghaffarlou, M. Salehiabar, J. Charmi et al., Preparation of alginate coated Pt nanoparticle for radiosensitization of breast cancer tumor. Int. J. Biol. Macromol. 233, 123273 (2023).

    [28] A. Madni, R. Kousar, N. Naeem, F. Wahid, Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 6(1), 11–25 (2021).

    [29] Q. Qu, J. Zhang, X. Chen, H. Ravanbakhsh, G. Tang et al., Triggered release from cellulose microparticles inspired by wood degradation by fungi. ACS Sustain. Chem. Eng. 9(1), 387–397 (2021).

    [30] Z. Zeng, M. Zhu, L. Chen, Y. Zhang, T. Lu et al., Design the molecule structures to achieve functional advantages of hydrogel wound dressings: advances and strategies. Compos. B Eng. 247, 110313 (2022).

    [31] X. Liu, Q. Liu, X. He, G. Yang, X. Chen et al., NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 612, 155866 (2023).

    [32] C. Peng, R. Pang, J. Li, E. Wang, Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. (2023).

    [33] T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51(14), 6126–6176 (2022).

    [34] X. Zhou, S. Zhang, Y. Liu, J. Meng, M. Wang et al., Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl. Mater. Interfaces 14(9), 11104–11115 (2022).

    [35] R. Zeng, Y. Li, X. Hu, W. Wang, Y. Li et al., Atomically site synergistic effects of dual-atom nanozyme enhances peroxidase-like properties. Nano Lett. 23(13), 6073–6080 (2023).

    [36] L. Chen, F. Wu, Y. Pang, D. Yan, S. Zhang et al., Therapeutic nanocoating of ocular surface. Nano Today 41, 101309 (2021).

    [37] Z. Li, R. Liu, Q. Ma, X. Yu, Z. Xu et al., Eyeliner tattoos disturb ocular surface homeostasis. Ocul. Surf. 23, 216–218 (2022).

    [38] H. Ou, Y. Qian, L. Yuan, H. Li, L. Zhang et al., Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 35(46), e2305077 (2023).

    [39] X. Dai, H. Liu, B. Cai, Y. Liu, K. Song et al., A bioinspired atomically thin nanodot supported single-atom nanozyme for antibacterial textile coating. Small 19(47), e2303901 (2023).

    [40] C.-C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 59(19), 7384–7389 (2020).

    [41] W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12, 2203 (2021).

    [42] N.K. Campbell, H.K. Fitzgerald, A. Dunne, Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 21, 411–425 (2021).

    [43] H. Xian, K. Watari, E. Sanchez-Lopez, J. Offenberger, J. Onyuru et al., Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55(8), 1370-1385.e8 (2022).

    [44] R. Zhang, M. Park, A. Richardson, N. Tedla, E. Pandzic et al., Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul. Surf. 18(1), 158–169 (2020).

    [45] L. García-Posadas, R.R. Hodges, D. Li, M.A. Shatos, T. Storr-Paulsen et al., Interaction of IFN-γ with cholinergic agonists to modulate rat and human goblet cell function. Mucosal Immunol. 9(1), 206–217 (2016).

    [46] Y. Dai, J. Zhang, J. Xiang, Y. Li, D. Wu et al., Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells. Redox Biol. 21, 101093 (2019).

    Dandan Chu, Mengyang Zhao, Shisong Rong, Wonho Jhe, Xiaolu Cai, Yi Xiao, Wei Zhang, Xingchen Geng, Zhanrong Li, Xingcai Zhang, Jingguo Li. Dual-Atom Nanozyme Eye Drops Attenuate Inflammation and Break the Vicious Cycle in Dry Eye Disease[J]. Nano-Micro Letters, 2024, 16(1): 120
    Download Citation