• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0300002 (2025)
Dingyi Ma1,2,*, Xinyu Liu1,2, Yongzheng Li2,3, Linfeng Guo1,2,4, and Xiaomin Xu4,5
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing , 210044, Jiangsu , China
  • 2Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing , 210044, Jiangsu , China
  • 3China Railway No.3 Group East China Construction Co., Ltd., Nanjing 211153, Jiangsu , China
  • 4Jiangsu International Joint Laboratory on Meterological Photonics and Optoelectronic Detection, Nanjing 210044, Jiangsu , China
  • 5Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
  • show less
    DOI: 10.3788/LOP241191 Cite this Article Set citation alerts
    Dingyi Ma, Xinyu Liu, Yongzheng Li, Linfeng Guo, Xiaomin Xu. Advances in Machine-Learning Techniques for Distributed Fiber-Optic Sensing Performance Enhancement[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0300002 Copy Citation Text show less
    References

    [1] Zhang X P, Zhang Y X, Wang L et al. Current status and future of research and applications for distributed fiber optic sensing technology[J]. Acta Optica Sinica, 44, 0106001(2024).

    [2] Zhang X P[M]. Fully distributed optical fiber sensing technology(2013).

    [3] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 15, 1038-1040(1990).

    [4] Bao X, Webb D J, Jackson D A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber[J]. Optics Letters, 18, 552-554(1993).

    [5] Bao X, Dhliwayo J, Heron N et al. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering[J]. Journal of Lightwave Technology, 13, 1340-1348(1995).

    [6] Soto M A, Bolognini G, Di Pasquale F. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors[J]. Optics Express, 16, 19097-19111(2008).

    [7] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 14, 179-181(2002).

    [8] Yu Q R, Bao X Y, Ravet F et al. Simple method to identify the spatial location better than the pulse length with high strain accuracy[J]. Optics Letters, 30, 2215-2217(2005).

    [9] Song K Y, Hotate K. Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis[J]. IEEE Photonics Technology Letters, 19, 1928-1930(2007).

    [10] Mou Y. Distributed fibre-optic vibration sensing system in long-distance pipeline anti-excavation damage application[J]. Petrochemical Industry Technology, 29, 192-193, 196(2022).

    [11] Bao T, Li C R, Qiu X et al. Intrusion monitoring system for utility tunnel based on distributed optical fiber vibration sensing technology[J]. Chinese Journal of Sensors and Actuators, 36, 1974-1980(2023).

    [12] Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100 km sensing length[J]. Optics Letters, 36, 277-279(2011).

    [13] Xiang M Q, Liu Y Y, Qing X G et al. Research on application of optical fiber sensing technology in nuclear power plant[J]. Process Automation Instrumentation, 40, 132-136(2019).

    [14] Li X Y. Development of 35 kV oil-immersed power transformer with built-in distributed optical fiber and analysis of 3D internal temperature distribution[D], 31-40(2021).

    [15] Gutscher M A, Quetel L, Murphy S et al. Detecting strain with a fiber optic cable on the seafloor offshore Mount Etna, Southern Italy[J]. Earth and Planetary Science Letters, 616, 118230(2023).

    [16] Fan Z Y, Wu C, Wang X. Research progress of optical fiber sensing technology in power equipment monitoring[J]. Insulating Materials, 54, 1-12(2021).

    [17] Li Z F, Chen F, Li B Z et al. Application of multiplexed strategy of distributed and single point fiber sensing technique in substation[J]. Electric Power Information and Communication Technology, 18, 50-55(2020).

    [18] Qian X Y, Wang Z N, Sun W et al. Non-local means denoising based on noise level estimation for BOTDA[C](2016).

    [19] Wu H, Wang L, Zhao Z Y et al. Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques[J]. Optics Express, 26, 5126-5139(2018).

    [20] Zaslawski S, Yang Z S, Thévenaz L. On the 2D post-processing of Brillouin optical time-domain analysis[J]. Journal of Lightwave Technology, 38, 3723-3736(2020).

    [21] Yang G J, Qian J H, Zhou Q Y et al. Review on digital signal processing techniques in distributed brillouin fiber sensing systems[J]. Acta Optica Sinica, 44, 0106003(2024).

    [22] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).

    [23] Ou J, Feng K P, Luo L H. Facial expression recognition based on PCA and deep learning[J]. Computer Applications and Software, 40, 185-191(2023).

    [24] Ruiz-Lombera R, Fuentes A, Rodriguez-Cobo L et al. Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks[J]. Journal of Lightwave Technology, 36, 2114-2121(2018).

    [25] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 15, 1842-1851(1997).

    [26] Li C B, Li Y Q. Fitting of Brillouin spectrum based on LabVIEW[C](2009).

    [27] Zhang C K, Yang Y H, Li A Q. Application of Levenberg-Marquardt algorithm in the Brillouin spectrum fitting[J]. Proceedings of SPIE, 7129, 71291Y(2008).

    [28] Soto M A, Thévenaz L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors[J]. Optics Express, 21, 31347-31366(2013).

    [29] Farahani M A, Castillo-Guerra E, Colpitts B G. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation[J]. Optics Letters, 36, 4275-4277(2011).

    [30] Zhang Y J, Li D, Fu X H et al. An improved Levenberg-Marquardt algorithm for extracting the features of Brillouin scattering spectrum[J]. Measurement Science & Technology, 24, 015204(2013).

    [31] Azad A K, Khan F N, Alarashi W H et al. Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition[J]. Optics Express, 25, 16534-16549(2017).

    [32] Chen S, Huang N, Li J L et al. Principal component analysis for structural damage identification based on distributed optical fiber sensing signals[J]. Journal of Experimental Mechanics, 37, 838-846(2022).

    [33] Wu H, Wang L, Guo N et al. Brillouin optical time-domain analyzer assisted by support vector machine for ultrafast temperature extraction[J]. Journal of Lightwave Technology, 35, 4159-4167(2017).

    [34] Wu H, Wang L, Guo N et al. Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy[J]. Optics Express, 25, 31210-31220(2017).

    [35] Wu H, Wang L, Zhao Z Y et al. Support vector machine based differential pulse-width pair Brillouin optical time domain analyzer[J]. IEEE Photonics Journal, 10, 6802911(2018).

    [36] Wu H, Wang H D, Shu C et al. BOTDA fiber sensor system based on FPGA accelerated support vector regression[J]. IEEE Transactions on Instrumentation and Measurement, 69, 3826-3837(2020).

    [37] Song Q S, Yan G P, Tang G W et al. Robust principal component analysis and support vector machine for detection of microcracks with distributed optical fiber sensors[J]. Mechanical Systems and Signal Processing, 146, 107019(2021).

    [38] Chen C, Seo H, Jun C H et al. Pavement crack detection and classification based on fusion feature of LBP and PCA with SVM[J]. International Journal of Pavement Engineering, 23, 3274-3283(2022).

    [39] Tan H X, Wu H, Shen L et al. Sparse representation of Brillouin spectrum using dictionary learning[J]. Optics Express, 28, 18160-18171(2020).

    [40] Lu C Y, Liang Y X, Jia X H et al. Artificial neural network for accurate retrieval of fiber Brillouin frequency shift with non-local effects[J]. IEEE Sensors Journal, 20, 8559-8569(2020).

    [41] Liang Y X, Jiang J L, Chen Y X et al. Optimized feedforward neural network training for efficient Brillouin frequency shift retrieval in fiber[J]. IEEE Access, 7, 68034-68042(2019).

    [42] Wang B W, Wang L, Guo N et al. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy[J]. Optics Express, 27, 2530-2543(2019).

    [43] Chang Y Q, Wu H, Zhao C et al. Distributed Brillouin frequency shift extraction via a convolutional neural network[J]. Photonics Research, 8, 690-697(2020).

    [44] Soto M A, Ramírez J A, Thévenaz L. Optimizing image denoising for long-range Brillouin distributed fiber sensing[J]. Journal of Lightwave Technology, 36, 1168-1177(2018).

    [45] Soto M, Ramírez J. A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nat. Commun, 7, 10870(2016).

    [46] Zhang Z H, Hu W L, Yan J S et al. The research of optical fiber Brillouin spectrum denoising based on wavelet transform and neural network[J]. Proceedings of SPIE, 8914, 891408(2013).

    [47] Farahani A M, Castillo-Guerra E, Colpitts B G. Acceleration of Measurements in BOTDA Sensors Using Adaptive Linear Prediction[J]. IEEE Sensors Journal, 13, 263-272(2013).

    [48] Li J L, Zeng K Y, Yang G J et al. High-fidelity denoising for differential pulse-width pair Brillouin optical time domain analyzer based on block-matching and 3D filtering[J]. Optics Communications, 525, 128866(2022).

    [49] Liu Y T, Zhang J G, Bai Q et al. Long‑range BOTDR using block matching and 3D filtering algorithm[J]. Chinese Journal of Lasers, 51, 1406002(2024).

    [50] Wang B W, Guo N, Wang L et al. Denoising and robust temperature extraction for BOTDA systems based on denoising autoencoder and DNN[C], WF29(2018).

    [51] Wang B W, Guo N, Wang L et al. Robust and fast temperature extraction for Brillouin optical time-domain analyzer by using denoising autoencoder-based deep neural networks[J]. IEEE Sensors Journal, 20, 3614-3620(2020).

    [52] Wu H, Wan Y Y, Tang M et al. Real-time denoising of Brillouin optical time domain analyzer with high data fidelity using convolutional neural networks[J]. Journal of Lightwave Technology, 37, 2648-2653(2019).

    [53] Li W Q, Bai Q, Zan W et al. SNR enhancement for BOTDA by DnCNN and pulse coding[J]. Chinese Journal of Lasers, 51, 1706004(2024).

    [54] Zheng H, Yan Y X, Wang Y Y et al. Deep learning enhanced long-range fast BOTDA for vibration measurement[J]. Journal of Lightwave Technology, 40, 262-268(2022).

    [55] Liu J Y, Wang T, Zhang Q et al. Rapid noise removal based dual adversarial network for the Brillouin optical time domain analyzer[J]. Optics Express, 29, 34002-34014(2021).

    [56] Luo K, Wang Y Y, Zhu B R et al. Noise reduction of brillouin distributed optical fiber sensors based on generative adversarial network[J]. Acta Optica Sinica, 44, 0106024(2024).

    [57] Wang Q L, Bai Q, Liu Y T et al. SNR enhancement for BOTDR with spatial-adaptive image denoising method[J]. Journal of Lightwave Technology, 41, 2562-2571(2023).

    [58] Zhang Z S, Wu H, Zhao C et al. High-performance Raman distributed temperature sensing powered by deep learning[J]. Journal of Lightwave Technology, 39, 654-659(2021).

    [59] Liehr S, Borchardt C, Münzenberger S. Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers[J]. Optics Express, 28, 39311-39325(2020).

    [60] Huang Q M, Chen Y K, Liu X Y et al. Fast positioning of Brillouin optical time domain reflectometry frequency shift and enhancement of spatial resolution using maximum-seeking method[J]. Acta Optica Sinica, 43, 1406004(2023).

    [61] Caceres J N, Noda K, Zhu G T et al. Spatial resolution enhancement of Brillouin optical correlation-domain reflectometry using convolutional neural network: proof of concept[J]. IEEE Access, 9, 124701-124710(2021).

    [62] Wu H, Zhao C, Tang M. Super spatial resolution Raman distributed temperature sensing via deep learning[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 5600108(2022).

    [63] Bertulessi M, Bignami D F, Boschini I et al. Monitoring strategic hydraulic infrastructures by Brillouin distributed fiber optic sensors[J]. Water, 14, 188(2022).

    [64] Shi B, Zhang D, Zhu H H[M]. Distributed fiber optic sensing for Geoengineering monitoring(2019).

    [65] Feng X, Wu W, Li X et al. Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors[J]. Smart Structures and Systems, 15, 245-258(2015).

    [66] Li Y Q, Zhao L J, Yang Z et al. Design and realization of the submarine cable three-dimensional monitoring system based on BOTDR[J]. Chinese Journal of Scientific Instrument, 35, 1029-1036(2014).

    [67] Wu N, Wang H T, Zhang Z F et al. Research of transmission line icing wide-area monitoring based on OPGW[J]. Electric Power, 50, 65-70(2017).

    [68] Jiao J R. A warning from the particularly major landslide at the Hong Au slag receptor site[J]. Soil and Water Conservation in China, 1-3(2017).

    [69] Sun Q, Feng H, Yan X Y et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 15, 15179-15197(2015).

    [70] Shi Y, Wang Y Y, Zhao L et al. An event recognition method for Φ-OTDR sensing system based on deep learning[J]. Sensors, 19, 3421(2019).

    [71] Yang Y Y, Li Y, Zhang T J et al. Early safety warnings for long-distance pipelines: a distributed optical fiber sensor machine learning approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 14991-14999(2021).

    Dingyi Ma, Xinyu Liu, Yongzheng Li, Linfeng Guo, Xiaomin Xu. Advances in Machine-Learning Techniques for Distributed Fiber-Optic Sensing Performance Enhancement[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0300002
    Download Citation