• Nano-Micro Letters
  • Vol. 16, Issue 1, 003 (2024)
Xianhui Qin1, Zhongrong Chen2, Lingxiao Shen1, Huilan Liu3,*..., Xilin Ouyang4,** and Gang Zhao3,***|Show fewer author(s)
Author Affiliations
  • 1Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China
  • 2School of Biomedical Engineering, Anhui Medical University, Hefei 230022, People’s Republic of China
  • 3Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People’s Republic of China
  • 4The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100089, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01213-3 Cite this Article
    Xianhui Qin, Zhongrong Chen, Lingxiao Shen, Huilan Liu, Xilin Ouyang, Gang Zhao. Core–Shell Microfiber Encapsulation Enables Glycerol-Free Cryopreservation of RBCs with High Hematocrit[J]. Nano-Micro Letters, 2024, 16(1): 003 Copy Citation Text show less
    References

    [1] H.G. Klein, D.R. Spahn, J.L. Carson, Transfusion medicine 1—red blood cell transfusion in clinical practice. Lancet 370, 415–426 (2007).

    [2] C.F. Högman, Preparation and preservation of red cells. Vox Sang. 74, 177–187 (1998).

    [3] G. Ramsey, Frozen red blood cells: cold comfort in a disaster? Transfusion 48, 2053–2055 (2008).

    [4] T. Kanias, J.P. Acker, Biopreservation of red blood cells—the struggle with hemoglobin oxidation. FEBS J. 277, 343–356 (2010).

    [5] P. Mazur, Cryobiology: the freezing of biological systems. Science 168, 939–949 (1970).

    [6] M.A. Schreiber, B.H. McCully, J.B. Holcomb, B.R. Robinson, J.P. Minei et al., Transfusion of cryopreserved packed red blood cells is safe and effective after trauma: a prospective randomized trial. Ann. Surg. 262, 426–433 (2015).

    [7] C.R. Valeri, G. Ragno, L.E. Pivacek, G.P. Cassidy, R. Srey et al., An experiment with glycerol-frozen red blood cells stored at − 80 °C for up to 37 years. VOX 79, 168–174 (2000).

    [8] S.J. Neuhaus, K. Wishaw, C. Lelkens, Australian experience with frozen blood products on military operations. Med. J. Aust. 192, 203–205 (2010).

    [9] R.O. Gilcher, S. McCombs, Seasonal blood shortages can be eliminated. Curr. Opin. Hematol. 12, 503–508 (2005).

    [10] A. Rowe, E. Eyster, A. Kellner, Liquid nitrogen preservation of red blood cells for transfusion—a low glycerol-rapid freeze procedure. Cryobiology 5, 119–128 (1968).

    [11] H. Meryman, M. Hornblower, Method for freezing and washing red blood-cells using a high glycerol concentration. Transfusion 12, 145–156 (1972).

    [12] A. Sputtek, P. Kuehnl, A.W. Rowe, Cryopreservation of erythrocytes, thrombocytes, and lymphocytes. Transfus. Med. Hemother. 34, 262–267 (2007).

    [13] D. Pegg, Long-term preservation of cells and tissues—review. J. Clin. Pathol. 29, 271–285 (1976).

    [14] S. Henkelman, F. Noorman, J.F. Badloe, J.W.M. Lagerberg, Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang. 108, 103–112 (2015).

    [15] K.L. Scott, J. Lecak, J.P. Acker, Biopreservation of red blood cells: past, present, and future. Transf. Med. Rev. 19, 127–142 (2005).

    [16] V. Pallotta, G.M. D’Amici, A. D’Alessandro, R. Rossetti, L. Zolla, Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Blood Cell Mol. Dis. 48, 226–232 (2012).

    [17] C.R. Valeri, G. Ragno, P. Van Houten, L. Rose, M. Rose et al., Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Transfusion 45, 1621–1627 (2005).

    [18] C.J. Capicciotti, J.D.R. Kurach, T.R. Turner, R.S. Mancini, J.P. Acker et al., Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci. Rep. 5, 9692 (2015).

    [19] A. Sputtek, G. Rau, Cryopreservation of human erythrocytes with hydroxyethyl starch (HES)—part 1: the procedure. Infusionsther. Transfusionsmed. 19, 269–275 (1992)

    [20] X. Sui, C. Wen, J. Yang, H. Guo, W. Zhao et al., Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater. Sci. Eng. 5, 1083–1091 (2019).

    [21] A. Murray, T.R. Congdon, R.M.F. Tomás, P. Kilbride, M.I. Gibson, Red blood cell cryopreservation with minimal post-thaw lysis enabled by a synergistic combination of a cryoprotecting polyampholyte with DMSO/trehalose. Biomacromol 23, 467–477 (2021).

    [22] J. Yang, C. Pan, J. Zhang, X. Sui, Y. Zhu et al., Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl. Mater. Interfaces 9, 42516–42524 (2017).

    [23] J.G. Briard, J.S. Poisson, T.R. Turner, C.J. Capicciotti, J.P. Acker et al., Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci. Rep. 6, 23619 (2016).

    [24] C.I. Biggs, T.L. Bailey, R. Ben Graham, C. Stubbs, A. Fayter et al., Polymer mimics of biomacromolecular antifreezes. Nat. Commun. 8, 1546 (2017).

    [25] Y. Hou, C. Lu, M. Dou, C. Zhang, H. Chang et al., Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater. 102, 403–415 (2020).

    [26] G. Bai, Z. Song, H. Geng, D. Gao, K. Liu et al., Oxidized quasi-carbon nitride quantum dots inhibit ice growth. Adv. Mater. 29, 1606843 (2017).

    [27] D.E. Mitchell, J.R. Lovett, S.P. Armes, M.I. Gibson, Combining biomimetic block copolymer worms with an ice-inhibiting polymer for the solvent-free cryopreservation of red blood cells. Angew. Chem. 128, 2851–2854 (2016).

    [28] R.C. Deller, M. Vatish, D.A. Mitchell, M.I. Gibson, Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat. Commun. 5, 3244 (2014).

    [29] S. Gao, K. Zhu, Q. Zhang, Q. Niu, J. Chong et al., Development of icephilic active glycopeptides for cryopreservation of human erythrocytes. Biomacromol 23, 530–542 (2022).

    [30] S. Chen, L. Wu, J. Ren, V. Bemmer, R. Zajicek et al., Comb-like pseudopeptides enable very rapid and efficient intracellular trehalose delivery for enhanced cryopreservation of erythrocytes. ACS Appl. Mater. Interfaces 12, 28941–28951 (2020).

    [31] S. Jin, L. Yin, B. Kong, S. Wu, Z. He, H. Xue, Z. Liu et al., Spreading fully at the ice-water interface is required for high ice recrystallization inhibition activity. Sci. China Chem. 62, 909–915 (2019).

    [32] G. Bai, D. Gao, Z. Liu, X. Zhou, J. Wang, Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 576, 437–441 (2019).

    [33] H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997–1001 (2017).

    [34] K. Liu, C. Wang, J. Ma, G. Shi, X. Yao et al., Janus effect of antifreeze proteins on ice nucleation. Proc. Natl. Acad. Sci. U.S.A. 113, 14739–14744 (2016).

    [35] A. Eroglu, M.J. Russo, R. Bieganski, A. Fowler, S. Cheley et al., Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163–167 (2000).

    [36] H. Huang, G. Zhao, Y. Zhang, J. Xu, T.L. Toth et al., Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation. ACS Biomater. Sci. Eng. 3, 1758–1768 (2017).

    [37] S. Gao, Q. Niu, Y. Wang, L. Ren, J. Chong et al., A dynamic membrane-active glycopeptide for enhanced protection of human red blood cells against freeze-stress. Adv. Healthc. Mater. (2023).

    [38] Q. Niu, S. Gao, X. Liu, J. Chong, L. Ren et al., Membrane stabilization versus perturbation by aromatic monoamine-modified γ-PGA for cryopreservation of human RBCs with high intracellular trehalose. J. Mater. Chem. B 10, 6038–6048 (2022).

    [39] X. Liu, S. Gao, L. Ren, X. Yuan, Achieving high intracellular trehalose in hRBCs by reversible membrane perturbation of maltopyranosides with synergistic membrane protection of macromolecular protectants. Biomater. Adv. 141, 213114 (2022).

    [40] X. Liu, S. Gao, Q. Niu, K. Zhu, L. Ren et al., Facilitating trehalose entry into hRBCs at 4 °C by alkylated ε-poly(l-lysine) for glycerol-free cryopreservation. J. Mater. Chem. B 10, 1042–1054 (2022).

    [41] M. Stefanic, K. Ward, H. Tawfik, R. Seemann, V. Baulin et al., Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 140, 138–149 (2017).

    [42] L. Shen, X. Guo, X. Ouyang, Y. Huang, D. Gao et al., Fine-tuned dehydration by trehalose enables the cryopreservation of RBCs with unusually low concentrations of glycerol. J. Mater. Chem. B 9, 295–306 (2021).

    [43] L. Shen, X. Qin, M. Wang, D. Gao, X. Ouyang et al., Combining cooling enhancement and trehalose dehydration to enable scalable volume cryopreservation of red blood cells with low concentration of glycerol. Adv. Eng. Mater. (2022).

    [44] C.T. Wagner, M.B. Burnett, S.A. Livesey, J. Connor, Red blood cell stabilization reduces the effect of cell density on recovery following cryopreservation. Cryobiology 41, 178–194 (2000).

    [45] L. Paz-Artigas, K. Ziani, C. Alcaine, C. Báez-Díaz, V. Blanco-Blázquez et al., Benefits of cryopreservation as long-term storage method of encapsulated cardiosphere-derived cells for cardiac therapy: a biomechanical analysis. Int. J. Pharmaceut. 607, 121014 (2021).

    [46] C. Tian, X. Zhang, G. Zhao, Vitrification of stem cell-laden core–shell microfibers with unusually low concentrations of cryoprotective agents. Biomater. Sci. UK 7, 889–900 (2019).

    [47] O. Jeon, Y.B. Lee, T.J. Hinton, A.W. Feinberg, E. Alsberg, Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 12, 61–70 (2019).

    [48] X. Liu, G. Zhao, Z. Chen, F. Panhwar, X. He, Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell–alginate hydrogel constructs. ACS Appl. Mater. Interfaces 10, 16822–16835 (2018).

    [49] G. Zhao, X. Liu, K. Zhu, X. He, Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv. Healthc. Mater. 6, 1700988 (2017).

    [50] C. Tian, L. Shen, C. Gong, Y. Cao, Q. Shi et al., Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles. Nat. Commun. 13, 1–16 (2022).

    [51] W. Chen, Z. Shu, D. Gao, A.Q. Shen, Sensing and sensibility: single-islet-based quality control assay of cryopreserved pancreatic islets with functionalized hydrogel microcapsules. Adv. Healthc. Mater. 5, 223–231 (2016).

    [52] L. Shao, Q. Gao, C. Xie, J. Fu, M. Xiang et al., Bioprinting of cell-laden microfiber: can it become a standard product? Adv. Healthc. Mater. 8, 1900014 (2019).

    [53] A. Murua, G. Orive, R.M. Hernández, J.L. Pedraz, Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 30, 3495–3501 (2009).

    [54] W. Zhang, G. Yang, A. Zhang, L.X. Xu, X. He, Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdevices 12, 89–96 (2010).

    [55] K. Cao, L. Shen, X. Guo, K. Wang, X. Hu et al., Hydrogel microfiber encapsulation enhances cryopreservation of human red blood cells with low concentrations of glycerol. Biopreserv. Biobank. 18, bio.2020.0003 (2020).

    [56] V. Han, K. Serrano, D.V. Devine, A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang. 98, 116–123 (2010).

    [57] R. Finken, U. Seifert, Wrinkling of microcapsules in shear flow. J. Phys. Condens. Matter 18, L185–L191 (2006).

    [58] Y. Zhang, G. Zhao, S.M. ChapalHossain, X. He, Modeling and experimental studies of enhanced cooling by medical gauze for cell cryopreservation by vitrification. Int. J. Heat Mass Transf. 114, 1–7 (2017).

    [59] H. Janssen, Thermal diffusion of water vapour in porous materials: fact or fiction? Int. J. Heat Mass Transf. 54, 1548–1562 (2011).

    [60] N. Shokri, P. Lehmann, D. Or, Critical evaluation of enhancement factors for vapor transport through unsaturated porous media. Water Resour. Res. (2009).

    [61] C.K. Ho, S.W. Webb, Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data-does enhanced vapor-phase diffusion exist? J. Porous Media 1, 71–92 (1998).

    [62] C.D. Díaz-Marín, L. Zhang, B.E. Fil, Z. Lu, M. Alshrah et al., Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 123103 (2022).

    [63] Y. Ma, L. Gao, Y. Tian, P. Chen, J. Yang et al., Advanced biomaterials in cell preservation: hypothermic preservation and cryopreservation. Acta Biomater. 131, 97–116 (2021).

    [64] J.H. Crowe, L.M. Crowe, Preservation of mammalian cells—learning nature’s tricks. Nat. Biotechnol. 18, 145–146 (2000).

    [65] P. Mazur, Kinetics of water loss from cells at subzero temperatures and likelihood of intracellular freezing. J. Gen. Physiol. 47, 347 (1963).

    [66] S. Fujikawa, The effect of various cooling rates on the membrane ultrastructure of frozen human erythrocytes and its relation to the extent of haemolysis after thawing. J. Cell Sci. 49, 369–382 (1981).

    [67] G. Rapatz, J.J. Sullivan, B. Luyet, Preservation of erythrocytes in blood containing various cryoprotective agents, frozen at various rates and brought to a given final temperature. Cryobiology 5, 18–25 (1968).

    [68] A.M. Freedman, I.A. Mirsky, Estimation of red blood cell count from hematocrit. Am. J. Clin. Pathol. 16, 104–109 (1946).

    [69] D.E. Pegg, M.P. Diaper, H. Le, B. Skaer, C.J. Hunt, The effect of cooling rate and warming rate on the packing effect in human erythrocytes frozen and thawed in the presence of 2 M glycerol. Cryobiology 21, 491–502 (1984).

    [70] Q.T. Shubhra, A. Alam, M. Quaiyyum, Mechanical properties of polypropylene composites: a review. J. Thermoplast. Compos. 26, 362–391 (2013).

    [71] P. Mazur, Basic problems in cryobiology, in Advances in Cryogenic Engineering. ed. by K.D. Timmerhaus (Springer, Boston, 1964), pp.28–37.

    [72] H. Souzu, P. Mazur, Temperature dependence of the survival of human erythrocytes frozen slowly in various concentrations of glycerol. Biophys. J. 23, 89–100 (1978).

    [73] G. Rapatz, B. Luyet, Effects of cooling rates on the preservation of erythrocytes in frozen blood containing various protective agents. Biodynamica 9, 333–350 (1965)

    [74] G. Rapatz, B. Luyet, Effects of cooling rates on the preservation of erythrocytes in frozen glycerolated blood. Biodynamica 9, 125–136 (1963)

    [75] W. Jiang, M. Li, Z. Chen, K.W. Leong, Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 16, 4482–4506 (2016).

    [76] L. Kuo, N. Thengchaisri, T.W. Hein, Regulation of coronary vasomotor function by reactive oxygen species. Mol. Med. Ther. 1, 25 (2012).

    [77] I. Chin-Yee, N. Arya, M.S. d’Almeida, The red cell storage lesion and its implication for transfusion. Transfus. Sci. 18, 447–458 (1997).

    [78] T. Yoshida, J.P. AuBuchon, L. Tryzelaar, K.Y. Foster, M.W. Bitensky, Extended storage of red blood cells under anaerobic conditions. Vox Sang. 92, 22–31 (2007).

    [79] A.G. Kriebardis, M.H. Antonelou, K.E. Stamoulis, E. Economou-Petersen, L.H. Margaritis et al., Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell. Mol. Med. 11, 148–155 (2007).

    [80] M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis et al., RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS ONE 8, e56759 (2013).

    [81] B. Jee, Clinical implications of the loss of vasoactive nitric oxide during red blood cell storage. Proc. Natl. Acad. Sci. U.S.A. 104, 19165–19166 (2007).

    [82] S.C. Rogers, L.B. Dosier, T.J. McMahon, H. Zhu, D. Timm et al., Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. PLoS ONE 13, e0209201 (2018).

    [83] E.K. Meyer, D.F. Dumont, S. Baker, L.J. Dumont, Rejuvenation capacity of red blood cells in additive solutions over long-term storage. Transfusion 51, 1574–1579 (2011).

    [84] Z. Xu, W. Dou, C. Wang, Y. Sun, Stiffness and ATP recovery of stored red blood cells in serum. Microsyst. Nanoeng. 5, 1–9 (2019).

    [85] M.M. Guest, T.P. Bond, R.G. Cooper, J.R. Derrick, Red blood cells: change in shape in capillaries. Science 142, 1319–1321 (1963).

    [86] N. Mohandas, P.G. Gallagher, Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008).

    [87] R.E. Assal, S. Guven, U.A. Gurkan, I. Gozen, H. Shafiee et al., Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv. Mater. 26, 5815–5822 (2014).

    [88] H. Ravanbakhsh, Z. Luo, X. Zhang, S. Maharjan, H.S. Mirkarimi et al., Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter 5, 573–593 (2022).

    Xianhui Qin, Zhongrong Chen, Lingxiao Shen, Huilan Liu, Xilin Ouyang, Gang Zhao. Core–Shell Microfiber Encapsulation Enables Glycerol-Free Cryopreservation of RBCs with High Hematocrit[J]. Nano-Micro Letters, 2024, 16(1): 003
    Download Citation