• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0314008 (2025)
Zhikai Zhu1,*, Fenglin Chen1, Feilong Liang3,4, Wenqing Shi2,3..., Yang Zhao1 and Jiang Huang1|Show fewer author(s)
Author Affiliations
  • 1School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, Guangdong , China
  • 2School of Materials Science and Engineering, Guangdong Ocean University, Yangjiang 529500, Guangdong , China
  • 3Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, Guangdong , China
  • 4Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524005, Guangdong , China
  • show less
    DOI: 10.3788/LOP241317 Cite this Article Set citation alerts
    Zhikai Zhu, Fenglin Chen, Feilong Liang, Wenqing Shi, Yang Zhao, Jiang Huang. Study on Laser Cladding Performance Improvement of AlCoCrFeNi-TiC5/WC15 Coating by Adding CeO2[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314008 Copy Citation Text show less
    SEM morphology of powder. (a) High-entropy alloy AlCoCrFeNi powder; (b) TiC powder; (c) WC powder; (d) CeO2 powder
    Fig. 1. SEM morphology of powder. (a) High-entropy alloy AlCoCrFeNi powder; (b) TiC powder; (c) WC powder; (d) CeO2 powder
    XL-F2000W fiber laser processing system
    Fig. 2. XL-F2000W fiber laser processing system
    Full cross-section of cladding with different CeO2 content. (a) 0%CeO2; (b) 1%CeO2; (c) 2%CeO2; (d) 3%CeO2
    Fig. 3. Full cross-section of cladding with different CeO2 content. (a) 0%CeO2; (b) 1%CeO2; (c) 2%CeO2; (d) 3%CeO2
    SEM images of cladding layers with different content of CeO2. (a) 0% bottom of cladding layer; (b) 0% middle of cladding layer; (c) 0% cladding top; (d) bottom of 1% cladding layer; (e) middle of 1% cladding layer; (f) top of 1% cladding layer; (g) bottom of 2% cladding layer; (h) middle of 2% cladding layer; (i) top of 2% cladding layer; (j) bottom of 3% cladding layer; (k) middle of 3% cladding layer; (l) top of 3% cladding layer
    Fig. 4. SEM images of cladding layers with different content of CeO2. (a) 0% bottom of cladding layer; (b) 0% middle of cladding layer; (c) 0% cladding top; (d) bottom of 1% cladding layer; (e) middle of 1% cladding layer; (f) top of 1% cladding layer; (g) bottom of 2% cladding layer; (h) middle of 2% cladding layer; (i) top of 2% cladding layer; (j) bottom of 3% cladding layer; (k) middle of 3% cladding layer; (l) top of 3% cladding layer
    SEM and enlarged images of cladding layers with 2% CeO2 content added. (a) Bottom of 2% cladding layer; (b) middle part of 2% cladding layer; (c) top of 2% cladding layer; (d) enlargement view of bottom of 2% cladding layer; (e) enlargement of middle of 2% cladding layer; (f) enlargement of top of 2% cladding layer
    Fig. 5. SEM and enlarged images of cladding layers with 2% CeO2 content added. (a) Bottom of 2% cladding layer; (b) middle part of 2% cladding layer; (c) top of 2% cladding layer; (d) enlargement view of bottom of 2% cladding layer; (e) enlargement of middle of 2% cladding layer; (f) enlargement of top of 2% cladding layer
    SEM image and EDS surface scanning of cladding layer with 2% CeO2 are added
    Fig. 6. SEM image and EDS surface scanning of cladding layer with 2% CeO2 are added
    XRD pattern and magnification of micro CeO2 cladding layer. (a) XRD pattern; (b) XRD magnification
    Fig. 7. XRD pattern and magnification of micro CeO2 cladding layer. (a) XRD pattern; (b) XRD magnification
    Microhardness diagram and average hardness distribution histogram of cladding layer after adding 0%‒3%CeO2. (a) Microhardness diagram; (b) distribution diagram of average hardness
    Fig. 8. Microhardness diagram and average hardness distribution histogram of cladding layer after adding 0%‒3%CeO2. (a) Microhardness diagram; (b) distribution diagram of average hardness
    Curves of friction coefficient of cladding layer with time
    Fig. 9. Curves of friction coefficient of cladding layer with time
    Curves of wear variation with scanning distance
    Fig. 10. Curves of wear variation with scanning distance
    Potentiodynamic polarization curves of cladding layer in 3.5% NaCl solution
    Fig. 11. Potentiodynamic polarization curves of cladding layer in 3.5% NaCl solution
    Nyquist impedance diagram of cladding layer in 3.5% NaCl solution
    Fig. 12. Nyquist impedance diagram of cladding layer in 3.5% NaCl solution
    Potentiodynamic polarization curve of cladding layer in 1 mol/L NaOH solution
    Fig. 13. Potentiodynamic polarization curve of cladding layer in 1 mol/L NaOH solution
    Nyquist impedance diagram of cladding layer in 1 mol/L NaOH solution
    Fig. 14. Nyquist impedance diagram of cladding layer in 1 mol/L NaOH solution
    Potentiodynamic polarization curve of cladding layer in 1 mol/L H2SO4 solution
    Fig. 15. Potentiodynamic polarization curve of cladding layer in 1 mol/L H2SO4 solution
    Nyquist impedance diagram of cladding layer in 1 mol/L H2SO4 solution
    Fig. 16. Nyquist impedance diagram of cladding layer in 1 mol/L H2SO4 solution
    CrNiMnMoSiFe
    16.0‒18.010.0‒14.02.02.0‒3.01.5Bal.
    Table 1. Chemical composition of 316L stainless steel
    AlCoCrFeNi
    11.0923.3420.1921.7223.53
    Table 2. Chemical composition of high-entropy alloy AlCoCrFeNi
    CeO2 content /%Wear amount /mm3
    00.4573
    10.2531
    20.0934
    30.1721
    Table 3. Wear amount of cladding layer with different CeO2 content
    MaterialEcorr /(V/SCE)Icorr /(A/cm2
    0%CeO2-0.9492.310×10-5
    1%CeO2-0.9162.229×10-5
    2%CeO2-0.8795.364×10-6
    3%CeO2-0.8824.896×10-6
    Table 4. Self-corrosion voltage and current density of cladding layers with different CeO2 content in 3.5% NaCl solution
    MaterialEcorr /(V/SCE)Icorr /(A/cm2
    0%CeO2-1.0825.343×10-5
    1%CeO2-1.0847.494×10-5
    2%CeO2-1.0654.899×10-5
    3%CeO2-1.0605.781×10-5
    Table 5. Self-corrosion voltage and corrosion current density of cladding layer with different CeO2 content in 1 mol/L NaOH solution
    MaterialEcorr /(V/SCE)Icorr /(A/cm2
    0%CeO2-0.3375.542×10-4
    1%CeO2-0.3395.714×10-4
    2%CeO2-0.3295.538×10-4
    3%CeO2-0.3355.879×10-4
    Table 6. Self-corrosion voltage and corrosion current density of cladding layer with different CeO2 content in 1 mol/L H2SO4 solution
    Zhikai Zhu, Fenglin Chen, Feilong Liang, Wenqing Shi, Yang Zhao, Jiang Huang. Study on Laser Cladding Performance Improvement of AlCoCrFeNi-TiC5/WC15 Coating by Adding CeO2[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314008
    Download Citation