• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0314008 (2025)
Zhikai Zhu1,*, Fenglin Chen1, Feilong Liang3,4, Wenqing Shi2,3..., Yang Zhao1 and Jiang Huang1|Show fewer author(s)
Author Affiliations
  • 1School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, Guangdong , China
  • 2School of Materials Science and Engineering, Guangdong Ocean University, Yangjiang 529500, Guangdong , China
  • 3Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, Guangdong , China
  • 4Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524005, Guangdong , China
  • show less
    DOI: 10.3788/LOP241317 Cite this Article Set citation alerts
    Zhikai Zhu, Fenglin Chen, Feilong Liang, Wenqing Shi, Yang Zhao, Jiang Huang. Study on Laser Cladding Performance Improvement of AlCoCrFeNi-TiC5/WC15 Coating by Adding CeO2[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314008 Copy Citation Text show less
    References

    [1] Yeh J W, Chang S Y, Hong Y D et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Materials Chemistry and Physics, 103, 41-46(2007).

    [2] Zhang P, Li Z W, Liu H M et al. Recent progress on the microstructure and properties of high entropy alloy coatings prepared by laser processing technology: a review[J]. Journal of Manufacturing Processes, 76, 397-411(2022).

    [3] Yeh J W, Chen S K, Lin S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).

    [4] Han B, Chen Y B, Tan C W et al. Microstructure and wear behavior of laser clad interstitial CoCrFeNi high entropy alloy coating reinforced by carbon nanotubes[J]. Surface and Coatings Technology, 434, 128241(2022).

    [5] Li L, Ye H, Liu Y et al. Process optimization and corrosion resistance of laser cladding AlCoCrFeNiCu high-entropy alloy[J]. Surface Technology, 51, 388-396(2022).

    [6] Shang X J, Liu Q B, Guo Y X et al. Nano-TiC reinforced[Cr-Fe4Co4Ni4]Cr3 high-entropy-alloy composite coating fabricated by laser cladding[J]. Journal of Materials Research and Technology, 21, 2076-2088(2022).

    [7] Wang H Z, Cheng Y H, Yang J Y et al. Microstructure and properties of laser clad Fe-based amorphous alloy coatings containing Nb powder[J]. Journal of Non-Crystalline Solids, 550, 120351(2020).

    [8] Liang H, Qiao D X, Miao J W et al. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater[J]. Journal of Materials Science & Technology, 85, 224-234(2021).

    [9] Zhang Y C, Wei P Y, Zhu Q et al. Microstructure and Pb-Bi erosion resistance property of Stellite6 coating by laser cladding on 316L stainless steel surface[J]. Materials Reports, 35, 121-126(2021).

    [10] Deng C, Wang C, Chai L J et al. Mechanical and chemical properties of CoCrFeNiMo0.2 high entropy alloy coating fabricated on Ti6Al4V by laser cladding[J]. Intermetallics, 144, 107504(2022).

    [11] Liu H, Gao Q, Man J X et al. Microstructure and properties of CoCrFeMnNiTix high-entropy alloy coating by laser cladding[J]. Chinese Journal of Lasers, 49, 0802002(2022).

    [12] Zhang T G, Zhang Q, Zhuang H F et al. Microstructure and properties of Ti2SC-Ti2Ni composite structural phase self-lubricating laser cladding layer on TC4 surface[J]. Acta Optica Sinica, 40, 1114001(2020).

    [13] Shu L S, Zhang C D, Yu H L et al. Structural characteristics and mechanical properties of laser-fused ln-situ Ti-C-B-Al composite coatings[J]. Materials Reports, 38, 173-177(2024).

    [14] Lü J P, Wu Y P, Hong S. Effects of WC addition on the erosion behavior of high-velocity oxygen fuel sprayed AlCoCrFeNi HEA coatings[J]. Ceramics International, 48, 18502-18512(2022).

    [15] Long H Y, Dong Z, Lu B W et al. Influence of WC content on microstructure and properties of laser‑cladded FeCoNiCr high‑entropy alloy coatings[J]. Chinese Journal of Lasers, 50, 2402206(2023).

    [16] Yang C, Jing C N, Fu T L et al. Effect of CeO2 on the microstructure and properties of AlCoCrFeNi2.1 laser cladding coatings[J]. Journal of Alloys and Compounds, 976, 172948(2024).

    [17] Cao Y L. Research of microstructure and properties of laser cladding Co/RE on 316L stainless steel[D](2015).

    [18] Zhu Z K, Shi W Q, Huang J. Microstructure and mechanical properties of TiC/WC-reinforced AlCoCrFeNi high-entropy alloys prepared by laser cladding[J]. Crystals, 14, 83(2024).

    [19] Fang J X, Ma G Z, Tian H L et al. Transformation-induced strain of a low transformation temperature alloy with high hardness during laser metal deposition[J]. Journal of Manufacturing Processes, 68, 1585-1595(2021).

    [20] Dada M, Popoola P, Mathe N et al. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys[J]. Journal of Alloys and Compounds, 866, 158777(2021).

    [21] Wang L, Wang L, Tang Y C et al. Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles[J]. Journal of Alloys and Compounds, 843, 155997(2020).

    [22] Poletti M G, Fiore G, Gili F et al. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 +5 at.% of C[J]. Materials & Design, 115, 247-254(2017).

    [23] Cui C, Wu M P, Miao X J et al. Microstructure and corrosion behavior of CeO2/FeCoNiCrMo high-entropy alloy coating prepared by laser cladding[J]. Journal of Alloys and Compounds, 890, 161826(2022).

    [24] Lian G F, Que L Z, Cao Q et al. Effect of CeO2 content on microstructure and properties of Ni45A+TiC composite coatings by laser cladding[J]. Surface Technology, 52, 448-456(2023).

    [25] Wang T, Zhu L, Song H Y et al. Effect of WC-17Co content on microstructure and properties of IN718 composites prepared by laser cladding[J]. Optics & Laser Technology, 148, 107780(2022).

    [26] Wang C M, Yu J X, Yu Y et al. Comparison of the corrosion and passivity behavior between CrMnFeCoNi and CrFeCoNi coatings prepared by argon arc cladding[J]. Journal of Materials Research and Technology, 9, 8482-8496(2020).

    [27] Guo Y F, Zhu J Q, Cao J J et al. Pitting corrosion mechanism of BCC+FCC dual-phase structured laser cladding FeCoCrNiAl0.5Ti0.5 HEAs coating[J]. Journal of Alloys and Compounds, 980, 173643(2024).

    [28] Zhang H F, Wang L, Zhang S et al. An investigation on wear and cavitation erosion-corrosion characteristics of the TiC modified Fe-based composite coating via laser cladding[J]. Journal of Materials Research and Technology, 26, 8440-8455(2023).

    [29] Shu F Y, Tian Y, Jiang S S et al. Effect of rare earth oxide CeO2 on microstructure and surface properties of laser cladded CoFeCrNiSiB high-entropy alloy coatings[J]. Materials Research Express, 6, 106517(2019).

    [30] Chong Z Z, Sun Y N, Cheng W J et al. Enhanced wear and corrosion resistances of AlCoCrFeNi high-entropy alloy coatings via high-speed laser cladding[J]. Materials Today Communications, 33, 104417(2022).

    Zhikai Zhu, Fenglin Chen, Feilong Liang, Wenqing Shi, Yang Zhao, Jiang Huang. Study on Laser Cladding Performance Improvement of AlCoCrFeNi-TiC5/WC15 Coating by Adding CeO2[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314008
    Download Citation