Haitao Yin, Yongying Yue. Medical Image Fusion Based on Semisupervised Learning and Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2215005

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 59, Issue 22, 2215005 (2022)

Fig. 1. Schematic diagram of proposed semisupervised learning

Fig. 2. Architecture of generator network

Fig. 3. SE channel attention module

Fig. 4. Architecture of discriminator network

Fig. 5. Fused images of unsupervised learning and semisupervised learning. (a) MRI-T1 image; (b) MRI-T2 image; (c) (d) CT images; (e) (f) fused images of unsupervised training; (g) (h) fused images of semisupervised training

Fig. 6. Fused results of MRI-T1 and MRI-T2 images. (a) MRI-T1; (b) MRI-T2; (c) U2Fusion; (d) DDcGAN; (e) Deepfuse; (f) DIDFuse; (g) FusionGAN; (h) PF-GAN; (i) SSL-FWGAN

Fig. 7. Fused results of MRI-T1 and CT images. (a) MRI-T1; (b) CT; (c) U2Fusion; (d) DDcGAN; (e) Deepfuse; (f) DIDFuse; (g) FusionGAN; (h) PF-GAN; (i) SSL-FWGAN

Fig. 8. Fused results of MRI-T2 and CT images. (a) MRI-T1; (b) CT; (c) U2Fusion; (d) DDcGAN; (e) Deepfuse; (f) DIDFuse; (g) FusionGAN; (h) PF-GAN; (i) SSL-FWGAN

Fig. 9. Implementation of SSL-FWGAN for fusing MRI and PET images

Fig. 10. Fused results of MRI-T1 and PET images. (a) MRI-T1; (b) PET; (c) U2Fusion; (d) DDcGAN; (e) Deepfuse; (f) DIDFuse; (g) FusionGAN; (h) PF-GAN; (i) SSL-FWGAN

Fig. 11. Fused results of MRI-T2 and PET images. (a) MRI-T1; (b) PET; (c) U2Fusion; (d) DDcGAN; (e) Deepfuse; (f) DIDFuse; (g) FusionGAN; (h) PF-GAN; (i) SSL-FWGAN
|
Table 1. Index results of unsupervised training and semisupervised training
|
Table 2. Index results of different methods for fusing gray images
|
Table 3. Index results of different methods for fusing color images

Set citation alerts for the article
Please enter your email address