[1] Liu J G. Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details[J]. International Journal of Remote Sensing, 21, 3461-3472(2000).
[2] Daneshvar S, Ghassemian H. MRI and PET image fusion by combining IHS and retina-inspired models[J]. Information Fusion, 11, 114-123(2010).
[3] Su J F, Zhang G C, Wang K. Compressed fusion of infrared and visible images combining robust principal component analysis and non-subsampled contour transform[J]. Laser & Optoelectronics Progress, 57, 041005(2020).
[4] Wang J X, Chen S, Xie M H. Multi-source image fusion based on low-rank decomposition and convolutional sparse coding[J]. Laser & Optoelectronics Progress, 58, 2210009(2021).
[5] Wang Z B, Cui Z J, Zhu Y. Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation[J]. Computers in Biology and Medicine, 123, 103823(2020).
[6] Zhao H, Zhang J X, Zhang Z G. PCNN medical image fusion based on NSCT and DWT[J]. Laser & Optoelectronics Progress, 58, 2017002(2021).
[7] Liu Y, Chen X, Peng H et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 36, 191-207(2017).
[8] Liu Y, Chen X, Cheng J et al. A medical image fusion method based on convolutional neural networks[C](2017).
[9] Fan F D, Huang Y Y, Wang L et al. A semantic-based medical image fusion approach[EB/OL]. https://arxiv.org/abs/1906.00225
[10] Ma J Y, Yu W, Liang P W et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).
[11] Ma J Y, Xu H, Jiang J J et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 29, 4980-4995(2020).
[12] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C], 2672-2680(2014).
[13] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks[C], 214-223(2017).
[14] Gulrajani I, Ahmed F, Arjovsky M et al. Improved training of Wasserstein GANs[C], 2226-2234(2017).
[15] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[17] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9906, 694-711(2016).
[18] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556
[19] Prabhakar K R, Srikar V S, Babu R V. DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C], 4724-4732(2017).
[20] Zhao Z X, Xu S, Zhang C X et al. DIDFuse: deep image decomposition for infrared and visible image fusion[EB/OL]. https://arxiv.org/abs/2003.09210
[21] Xu H, Ma J Y, Jiang J J et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2022).
[22] Fu Y, Wu X J, Durrani T. Image fusion based on generative adversarial network consistent with perception[J]. Information Fusion, 72, 110-125(2021).
[23] Zhuang J T, Tang T, Ding Y F et al. AdaBelief optimizer: adapting stepsizes by the belief in observed gradients[EB/OL]. https://arxiv.org/abs/2010.07468