• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0210008 (2023)
Feiyan Yang1,2 and Meng Wang1,2,*
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunan, China
  • 2Key Laboratory of Artificial Intelligence in Yunnan Province, Kunming 650500, Yunan, China
  • show less
    DOI: 10.3788/LOP212808 Cite this Article Set citation alerts
    Feiyan Yang, Meng Wang. Infrared and Visible Image Fusion Based on Structure-Texture Decomposition and VGG Deep Networks[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210008 Copy Citation Text show less
    Framework of proposed method
    Fig. 1. Framework of proposed method
    Example diagram of triband decomposition. (a) Input images; (b) high-frequency subbands; (c) low-frequency subbands; (d) low-frequency structures; (e) low-frequency textures
    Fig. 2. Example diagram of triband decomposition. (a) Input images; (b) high-frequency subbands; (c) low-frequency subbands; (d) low-frequency structures; (e) low-frequency textures
    Flow chart of high-frequency subband fusion
    Fig. 3. Flow chart of high-frequency subband fusion
    Fusion results of “Camp” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fig. 4. Fusion results of “Camp” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fusion results of “Street” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fig. 5. Fusion results of “Street” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fusion results of “Gate” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fig. 6. Fusion results of “Gate” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fusion results of “Car” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fig. 7. Fusion results of “Car” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fusion results of “House” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Fig. 8. Fusion results of “House” source image. (a) Infrared images; (b) visible image; (c) CBF; (d) JSR; (e) JSRSD; (f) DRTV; (g) CVT-SR; (h) GTF; (i) MISF; (j) proposed method
    Three-band decomposition model verification. (a) Infrared images; (b) visible images; (c) dual-band decomposition; (d) triband decomposition
    Fig. 9. Three-band decomposition model verification. (a) Infrared images; (b) visible images; (c) dual-band decomposition; (d) triband decomposition
    Histogram of objective indexes of 21 fusion images
    Fig. 10. Histogram of objective indexes of 21 fusion images
    Convolution groupConvolutionPoolingChannel numberOutput
    1(1_1,1_2)3×3,1Max,2×264N×N
    2(2_1,2_2)3×3,1Max,2×2128(N/2)×(N/2)
    3(3_1,3_2,3_3)3×3,1Max,2×2256(N/4)×(N/4)
    4(4_1,4_2,4_3)3×3,1Max,2×2512(N/8)×(N/8)
    5(5_1,5_2,5_3)3×3,1Max,2×2512(N/16)×(N/16)
    Table 1. Structural parameters of VGG-16
    Input:infrared and visible image Iir and Ivis. Output:fused image IF
    Step 1:Iir and Ivis are decomposed by means of mean filtering
    Step 2:Low-frequency subbands IirL and IvisL are decomposed by ST decomposition to obtain low-frequency structure FL,s and low-frequency texture FL,t
    Step 3:Low-frequency structure-texture fusion
    Step 3.1:Low-frequency structures FL,s are fused using average rule
    Step 3.2:Low frequency textures FL,t are fused using NSF rules
    Step 4:High-frequency subband fusion
    Step 4.1:Input image are fed into VGG-16 network to extract multi-channel feature map
    Step 4.2:L1 regularization and convolution smoothing are performed on multi-channel feature map to obtain single channel feature map
    Step 4.3:Single channel feature map is up sampled and corresponding weight map is calculated
    Step 4.4:Five-dimensional weight map is normalized by sigmoid average normalization strategy to obtain normalized weight to guide fusion of high-frequency subbands,and pre-fused high-frequency image FH is obtained
    Step 5:Final fusion image IF is reconstructed from three pre-fusion subbands(FL,sFL,tFH
    Table 2. Concrete implementation of proposed method
    ImageAlgorithmCBFJSRJSRSDDRTVCVT-SRGTFMISFProposed
    Group 1 “Camp”NABF0.24360.23190.31370.09460.15370.07540.04670.0261
    SSIM0.60090.60240.55050.68020.69200.67760.69770.7452
    MS-SSIM0.73690.87200.75300.69900.86370.77330.83340.8807
    CC0.54660.62990.56180.45610.57260.46220.49780.6349
    MSE0.01360.04780.02370.01990.01450.01920.01830.0109
    PSNR66.799261.333664.376665.137466.511565.308765.509567.7416
    Group 2 “Street”NABF0.48700.18040.19080.14370.21420.08030.07620.0284
    SSIM0.49860.62990.62370.62450.63370.61720.63910.6741
    MS-SSIM0.69860.96880.94710.91770.92140.89530.91240.9162
    CC0.52670.64760.61720.49480.54380.50240.52800.6740
    MSE0.03100.04620.04370.04000.03470.03810.03780.0207
    PSNR63.223161.482561.721162.113662.732662.317762.357264.9705
    Group 3 “Gate”NABF0.25540.24300.34190.06860.17290.03650.05820.0128
    SSIM0.64970.62810.56650.68710.72290.70080.70420.7775
    MS-SSIM0.73330.90370.83290.75890.88060.79790.81350.9162
    CC0.49370.58620.56370.39050.50050.39100.43250.6073
    MSE0.03310.07140.05450.04530.04010.04480.04050.0232
    PSNR62.937659.596560.764561.572962.103761.614762.052964.478
    Group 4 “Car”NABF0.23930.26920.38070.13510.18350.07710.06600.0209
    SSIM0.61720.56920.49900.71170.69800.71950.69620.7643
    MS-SSIM0.69860.81460.77460.75320.85760.82600.79980.8929
    CC0.23030.36590.33360.22270.25170.22340.24600.3865
    MSE0.04160.11150.07260.05060.04160.05080.04660.0262
    PSNR61.938257.658459.521761.086261.940461.069561.448063.9461
    Group 5 “House”NABF0.52780.21090.28010.11000.22160.08290.15950.0218
    SSIM0.45750.62530.58080.64860.65370.66060.64920.7248
    MS-SSIM0.51050.88730.74460.80550.86680.82670.76680.9105
    CC0.26240.35560.27220.15190.20620.16470.19030.3794
    MSE0.04830.09920.08450.06680.06570.07340.06590.0374
    PSNR61.287858.165258.863059.883459.958059.474659.942662.4026
    Table 3. Comparison of objective indexes of fusion results
    SchemeNABFSSIMMS-SSIMCCMSEPSNR
    Max+ST0.03710.74770.89580.48690.024464.6999
    VGG_Max+ST0.01860.76290.90280.49040.024164.7542
    VGG_Sigmiod+ST0.01770.76590.90960.49950.024164.7526
    Table 4. Ablation experiment
    Feiyan Yang, Meng Wang. Infrared and Visible Image Fusion Based on Structure-Texture Decomposition and VGG Deep Networks[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210008
    Download Citation