• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0210008 (2023)
Feiyan Yang1,2 and Meng Wang1,2,*
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunan, China
  • 2Key Laboratory of Artificial Intelligence in Yunnan Province, Kunming 650500, Yunan, China
  • show less
    DOI: 10.3788/LOP212808 Cite this Article Set citation alerts
    Feiyan Yang, Meng Wang. Infrared and Visible Image Fusion Based on Structure-Texture Decomposition and VGG Deep Networks[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210008 Copy Citation Text show less
    References

    [1] Kumar B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 9, 1193-1204(2015).

    [2] Jiang Z Y, Wang L. Visible and infrared image fusion algorithm based on significance detection and weight mapping[J]. Journal of Electronic Measurement and Instrumentation, 35, 174-182(2021).

    [3] Zhao C, Huang Y D. Infrared and visible image fusion via rolling guidance filtering and hybrid multi-scale decomposition[J]. Laser & Optoelectronics Progress, 56, 141007(2019).

    [4] Li J, Peng Y X, Song M H et al. Image fusion based on guided filter and online robust dictionary learning[J]. Infrared Physics & Technology, 105, 103171(2020).

    [5] Li X S, Zhou F Q, Tan H S. Joint image fusion and denoising via three-layer decomposition and sparse representation[J]. Knowledge-Based Systems, 224, 107087(2021).

    [6] Lee H, Jeon J, Kim J et al. Structure-texture decomposition of images with interval gradient[J]. Computer Graphics Forum, 36, 262-274(2017).

    [7] Yin H T. Sparse representation with learned multiscale dictionary for image fusion[J]. Neurocomputing, 148, 600-610(2015).

    [8] Shen Y, Chen X P, Yuan Y B et al. Infrared and visible image fusion based on significant matrix and neural network[J]. Laser & Optoelectronics Progress, 57, 201007(2020).

    [9] Liu Y, Chen X, Ward R K et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 23, 1882-1886(2016).

    [10] Wang M, Liu X W, Jin H P. A generative image fusion approach based on supervised deep convolution network driven by weighted gradient flow[J]. Image and Vision Computing, 86, 1-16(2019).

    [11] Hou C P, Wang X C, Xia H et al. Infrared and visible image fusion method based on dual-channel generative adversarial network[J]. Laser & Optoelectronics Progress, 58, 1410024(2021).

    [12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556

    [13] Li H, Wu X J, Kittler J. Infrared and visible image fusion using a deep learning framework[C], 2705-2710(2018).

    [14] Li H, Zhang L M, Jiang M R et al. An infrared and visible image fusion algorithm based on ResNet152[J]. Laser & Optoelectronics Progress, 57, 081013(2020).

    [15] Shen Y, Chen X P. Infrared and visible image fusion based on latent low-rank representation decomposition and VGG Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 47, 1105-1114(2021).

    [16] Zhang Q H, Fu Y L, Li H F et al. Dictionary learning method for joint sparse representation-based image fusion[J]. Optical Engineering, 52, 057006(2013).

    [17] Liu C H, Qi Y, Ding W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 83, 94-102(2017).

    [18] Du Q L, Xu H, Ma Y et al. Fusing infrared and visible images of different resolutions via total variation model[J]. Sensors, 18, 3827(2018).

    [19] Liu Y, Liu S P, Wang Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 24, 147-164(2015).

    [20] Ma J Y, Chen C, Li C et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 31, 100-109(2016).

    [21] Zhan K, Kong L W, Liu B et al. Multimodal image seamless fusion[J]. Journal of Electronic Imaging, 28, 023027(2019).

    Feiyan Yang, Meng Wang. Infrared and Visible Image Fusion Based on Structure-Texture Decomposition and VGG Deep Networks[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210008
    Download Citation