• Acta Optica Sinica
  • Vol. 44, Issue 14, 1400001 (2024)
Boyan Fu, Qianhui Bi, Shiyu Zheng, Yujuan Peng..., Shuming Wang*, Xun Cao**, Zhenlin Wang and Shining Zhu***|Show fewer author(s)
Author Affiliations
  • National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, Jiangsu , China
  • show less
    DOI: 10.3788/AOS232006 Cite this Article Set citation alerts
    Boyan Fu, Qianhui Bi, Shiyu Zheng, Yujuan Peng, Shuming Wang, Xun Cao, Zhenlin Wang, Shining Zhu. Advanced Metasurface Imaging and Display Based on Multidimensional Light Field Manipulation (Invited)[J]. Acta Optica Sinica, 2024, 44(14): 1400001 Copy Citation Text show less
    Principles and mechanisms of metasurface imaging and display. (a)-(c) Focusing phase light propagation; (d) focusing achieved through metasurfaces utilizing propagation and geometric phases[60]; (e) recording and reconstruction of holograms[64]; (f) reconstruction of light fields employing CGH images[64]; (g) principle and flowchart of the GS algorithm[64]; (h) color tuning holography based on metasurface[65]; (i) metasurface-based holographic display[66]
    Fig. 1. Principles and mechanisms of metasurface imaging and display. (a)-(c) Focusing phase light propagation; (d) focusing achieved through metasurfaces utilizing propagation and geometric phases[60]; (e) recording and reconstruction of holograms[64]; (f) reconstruction of light fields employing CGH images[64]; (g) principle and flowchart of the GS algorithm[64]; (h) color tuning holography based on metasurface[65]; (i) metasurface-based holographic display[66]
    Inverse design optimization algorithms for metasurfaces. (a)(b) Focusing and polarization conversion based on topological optimization[70-71]; (c)(d) color holography and color routing achieved through genetic algorithms[74-75]; (e)(f) cascaded metasurfaces designed using neural networks[81-82]; (g) end-to-end design in nano-optics utilizing neural networks[83]
    Fig. 2. Inverse design optimization algorithms for metasurfaces. (a)(b) Focusing and polarization conversion based on topological optimization[70-71]; (c)(d) color holography and color routing achieved through genetic algorithms[74-75]; (e)(f) cascaded metasurfaces designed using neural networks[81-82]; (g) end-to-end design in nano-optics utilizing neural networks[83]
    Research on dispersion control using metasurfaces. (a) Visible-light metalens surpassing the diffraction limit[60]; (b) infrared achromatic metalens[84]; (c) visible-light achromatic metalens[85]; (d) spectral tomographic imaging enabled by chromatic dispersion[87]; (e) dual-band tunable dispersion metasurface[88]; (f) compact metasurface spectrometer[89]
    Fig. 3. Research on dispersion control using metasurfaces. (a) Visible-light metalens surpassing the diffraction limit[60]; (b) infrared achromatic metalens[84]; (c) visible-light achromatic metalens[85]; (d) spectral tomographic imaging enabled by chromatic dispersion[87]; (e) dual-band tunable dispersion metasurface[88]; (f) compact metasurface spectrometer[89]
    Studies on multiplexed imaging using metasurfaces. (a) Orthogonal polarization multiplexing based on metasurfaces[97]; (b) full Stokes imaging employing metasurfaces[98]; (c) switchable photonic spin-multiplexing metasurface based on the spin state of incident light[100]; (d) the RVB phase-based optical differential operations and image edge detection[102]; (e) the PB phase-based optical differential operations and image edge detection[103]; (f) polarization multiplexing metasurface surpassing the limits of polarization multiplexing[99]
    Fig. 4. Studies on multiplexed imaging using metasurfaces. (a) Orthogonal polarization multiplexing based on metasurfaces[97]; (b) full Stokes imaging employing metasurfaces[98]; (c) switchable photonic spin-multiplexing metasurface based on the spin state of incident light[100]; (d) the RVB phase-based optical differential operations and image edge detection[102]; (e) the PB phase-based optical differential operations and image edge detection[103]; (f) polarization multiplexing metasurface surpassing the limits of polarization multiplexing[99]
    Applications of metasurfaces on multidimensional imaging and display. (a) Achromatic metalens array in the visible light band[104]; (b) ultra-compact light-field spectral imaging through a system utilizing lateral dispersion metasurfaces[106]; (c) polarization spectral recognition using a system based on liquid crystal and metasurface gratings[110]; (d) 3D reconstruction based on metasurface structured light imaging[108]; (e) 3D gesture recognition based on metasurface structured light imaging[109]
    Fig. 5. Applications of metasurfaces on multidimensional imaging and display. (a) Achromatic metalens array in the visible light band[104]; (b) ultra-compact light-field spectral imaging through a system utilizing lateral dispersion metasurfaces[106]; (c) polarization spectral recognition using a system based on liquid crystal and metasurface gratings[110]; (d) 3D reconstruction based on metasurface structured light imaging[108]; (e) 3D gesture recognition based on metasurface structured light imaging[109]
    Holographic and holographic 3D display. (a) Diatomic metasurface of vector holography[124]; (b) full-color complex amplitude vector holography[125]; (c) longitudinal polarization transform stereo vector holography[126]; (d) single-axis 3D holograms[127]; (e) wide-angle 3D holographic display[128]; (f) dynamic color 3D holographic display[129]
    Fig. 6. Holographic and holographic 3D display. (a) Diatomic metasurface of vector holography[124]; (b) full-color complex amplitude vector holography[125]; (c) longitudinal polarization transform stereo vector holography[126]; (d) single-axis 3D holograms[127]; (e) wide-angle 3D holographic display[128]; (f) dynamic color 3D holographic display[129]
    Light field display and AR/VR display. (a)(b) Wide-angle light field display using metasurfaces[131-132]; (c)(d) AR/VR display based on metasurfaces[42,133]; (e)(f) AR/VR display utilizing waveguide resonance[134-135]
    Fig. 7. Light field display and AR/VR display. (a)(b) Wide-angle light field display using metasurfaces[131-132]; (c)(d) AR/VR display based on metasurfaces[42,133]; (e)(f) AR/VR display utilizing waveguide resonance[134-135]
    Computational imaging mechanisms using metasurfaces. (a) Acquisition of real-time brain spectrum in rats using compressed sensing[136]; (b) retrieval of object spectral light field information through spatial-spectral coupling with metasurfaces[106]; (c) on-chip spectral imaging achieved by integrating neural networks with compressed sensing[137]; (d) facial recognition based on spectral information[138]
    Fig. 8. Computational imaging mechanisms using metasurfaces. (a) Acquisition of real-time brain spectrum in rats using compressed sensing[136]; (b) retrieval of object spectral light field information through spatial-spectral coupling with metasurfaces[106]; (c) on-chip spectral imaging achieved by integrating neural networks with compressed sensing[137]; (d) facial recognition based on spectral information[138]
    Metasurface-based microscopic imaging techniques. (a) Metasurface-assisted fiber-optic endoscopic imaging[139]; (b) photonic chip-based structural illumination microsurgery[140]; (c) three-dimensional high-resolution tomography based on metasystems[141]; (d) confocal microscopic imaging based on subwavelength devices[142]
    Fig. 9. Metasurface-based microscopic imaging techniques. (a) Metasurface-assisted fiber-optic endoscopic imaging[139]; (b) photonic chip-based structural illumination microsurgery[140]; (c) three-dimensional high-resolution tomography based on metasystems[141]; (d) confocal microscopic imaging based on subwavelength devices[142]
    Optical micromanipulation technology. (a) Multi-dimensional integrated optical tweezer-light wrench[144]; (b) multifunctional optical tweezers for micro-manipulation technology[145]; (c) spatial 3D display technology based on photophoresis technology[146]; (d) simultaneous capture and imaging along the optical axis[17]
    Fig. 10. Optical micromanipulation technology. (a) Multi-dimensional integrated optical tweezer-light wrench[144]; (b) multifunctional optical tweezers for micro-manipulation technology[145]; (c) spatial 3D display technology based on photophoresis technology[146]; (d) simultaneous capture and imaging along the optical axis[17]
    Dynamically tunable metasurfaces. (a) Adjustable focal length imaging realized through physical movement by an electric motor[147]; (b) dynamic beam control using a moiré metasurface based on dual-layer twisting[148]; (c) quasi-continuous tunable active metasurfaces achieved with GSST[149]; (d) dynamic display facilitated by the combination of liquid crystal and metasurfaces[150]; (e) control of wavefront evolution using ultrafast frequency pulses[151]; (f) dynamic holographic display utilizing the multiplexing of vortex beams[152]
    Fig. 11. Dynamically tunable metasurfaces. (a) Adjustable focal length imaging realized through physical movement by an electric motor[147]; (b) dynamic beam control using a moiré metasurface based on dual-layer twisting[148]; (c) quasi-continuous tunable active metasurfaces achieved with GSST[149]; (d) dynamic display facilitated by the combination of liquid crystal and metasurfaces[150]; (e) control of wavefront evolution using ultrafast frequency pulses[151]; (f) dynamic holographic display utilizing the multiplexing of vortex beams[152]
    Quantum imaging and holography based on metasurface. (a) Metasurface-mediated quantum entanglement imaging[154]; (b) metasurface-enabled quantum edge detection[155]; (c) polarization-sensitive metasurface prediction imaging[156]; (d) conventional quantum holography[157]; (e) OAM high-dimensional entangled quantum holography[158]
    Fig. 12. Quantum imaging and holography based on metasurface. (a) Metasurface-mediated quantum entanglement imaging[154]; (b) metasurface-enabled quantum edge detection[155]; (c) polarization-sensitive metasurface prediction imaging[156]; (d) conventional quantum holography[157]; (e) OAM high-dimensional entangled quantum holography[158]
    PerformanceNAFocusing efficiency /%Field of view (FOV) /(°)Imaging resolution /μmReference
    High NA0.8

    86 (405 nm)

    73 (532 nm)

    66 (660 nm)

    4.3860
    0.780.77587
    0.9827112
    0.9517.2113
    0.98670.277 (FWHM)114
    High focusing efficiency0.6

    80 (x-polarized)

    83 (y-polarized)

    66
    0.28

    72 (455 nm)

    55 (520 nm)

    39 (633nm)

    6.21106
    0.4970602.9115
    0.7900.34116
    Large FOV0.1117834.36117
    0.870180118
    0.7170180119
    65120120
    60120121
    Table 1. Performance parameters of metalens imaging
    ReferenceClassificationSpatial resolutionFOVDisplay size
    [42]See-through metalens100°57 mm×57 mm
    [127]CGH hologram plate800 pixel×800 pixel40°0.4 mm×0.4 mm
    [128]Holographic display52°
    [131]2D-metagrating3600 pixel×1200 pixel160°54 mm×54 mm
    [132]Metalens array5×5 elemental lenses (RCP)10×10 elemental lenses (LCP)
    Table 2. Performance parameters of the display technology based on metasurface
    Boyan Fu, Qianhui Bi, Shiyu Zheng, Yujuan Peng, Shuming Wang, Xun Cao, Zhenlin Wang, Shining Zhu. Advanced Metasurface Imaging and Display Based on Multidimensional Light Field Manipulation (Invited)[J]. Acta Optica Sinica, 2024, 44(14): 1400001
    Download Citation