Boyan Fu, Qianhui Bi, Shiyu Zheng, Yujuan Peng, Shuming Wang, Xun Cao, Zhenlin Wang, Shining Zhu. Advanced Metasurface Imaging and Display Based on Multidimensional Light Field Manipulation (Invited)[J]. Acta Optica Sinica, 2024, 44(14): 1400001

Search by keywords or author
- Acta Optica Sinica
- Vol. 44, Issue 14, 1400001 (2024)
![Principles and mechanisms of metasurface imaging and display. (a)-(c) Focusing phase light propagation; (d) focusing achieved through metasurfaces utilizing propagation and geometric phases[60]; (e) recording and reconstruction of holograms[64]; (f) reconstruction of light fields employing CGH images[64]; (g) principle and flowchart of the GS algorithm[64]; (h) color tuning holography based on metasurface[65]; (i) metasurface-based holographic display[66]](/richHtml/gxxb/2024/44/14/1400001/img_01.jpg)
Fig. 1. Principles and mechanisms of metasurface imaging and display. (a)-(c) Focusing phase light propagation; (d) focusing achieved through metasurfaces utilizing propagation and geometric phases[60]; (e) recording and reconstruction of holograms[64]; (f) reconstruction of light fields employing CGH images[64]; (g) principle and flowchart of the GS algorithm[64]; (h) color tuning holography based on metasurface[65]; (i) metasurface-based holographic display[66]
![Inverse design optimization algorithms for metasurfaces. (a)(b) Focusing and polarization conversion based on topological optimization[70-71]; (c)(d) color holography and color routing achieved through genetic algorithms[74-75]; (e)(f) cascaded metasurfaces designed using neural networks[81-82]; (g) end-to-end design in nano-optics utilizing neural networks[83]](/richHtml/gxxb/2024/44/14/1400001/img_02.jpg)
Fig. 2. Inverse design optimization algorithms for metasurfaces. (a)(b) Focusing and polarization conversion based on topological optimization[70-71]; (c)(d) color holography and color routing achieved through genetic algorithms[74-75]; (e)(f) cascaded metasurfaces designed using neural networks[81-82]; (g) end-to-end design in nano-optics utilizing neural networks[83]
![Research on dispersion control using metasurfaces. (a) Visible-light metalens surpassing the diffraction limit[60]; (b) infrared achromatic metalens[84]; (c) visible-light achromatic metalens[85]; (d) spectral tomographic imaging enabled by chromatic dispersion[87]; (e) dual-band tunable dispersion metasurface[88]; (f) compact metasurface spectrometer[89]](/Images/icon/loading.gif)
Fig. 3. Research on dispersion control using metasurfaces. (a) Visible-light metalens surpassing the diffraction limit[60]; (b) infrared achromatic metalens[84]; (c) visible-light achromatic metalens[85]; (d) spectral tomographic imaging enabled by chromatic dispersion[87]; (e) dual-band tunable dispersion metasurface[88]; (f) compact metasurface spectrometer[89]
![Studies on multiplexed imaging using metasurfaces. (a) Orthogonal polarization multiplexing based on metasurfaces[97]; (b) full Stokes imaging employing metasurfaces[98]; (c) switchable photonic spin-multiplexing metasurface based on the spin state of incident light[100]; (d) the RVB phase-based optical differential operations and image edge detection[102]; (e) the PB phase-based optical differential operations and image edge detection[103]; (f) polarization multiplexing metasurface surpassing the limits of polarization multiplexing[99]](/Images/icon/loading.gif)
Fig. 4. Studies on multiplexed imaging using metasurfaces. (a) Orthogonal polarization multiplexing based on metasurfaces[97]; (b) full Stokes imaging employing metasurfaces[98]; (c) switchable photonic spin-multiplexing metasurface based on the spin state of incident light[100]; (d) the RVB phase-based optical differential operations and image edge detection[102]; (e) the PB phase-based optical differential operations and image edge detection[103]; (f) polarization multiplexing metasurface surpassing the limits of polarization multiplexing[99]
![Applications of metasurfaces on multidimensional imaging and display. (a) Achromatic metalens array in the visible light band[104]; (b) ultra-compact light-field spectral imaging through a system utilizing lateral dispersion metasurfaces[106]; (c) polarization spectral recognition using a system based on liquid crystal and metasurface gratings[110]; (d) 3D reconstruction based on metasurface structured light imaging[108]; (e) 3D gesture recognition based on metasurface structured light imaging[109]](/Images/icon/loading.gif)
Fig. 5. Applications of metasurfaces on multidimensional imaging and display. (a) Achromatic metalens array in the visible light band[104]; (b) ultra-compact light-field spectral imaging through a system utilizing lateral dispersion metasurfaces[106]; (c) polarization spectral recognition using a system based on liquid crystal and metasurface gratings[110]; (d) 3D reconstruction based on metasurface structured light imaging[108]; (e) 3D gesture recognition based on metasurface structured light imaging[109]
![Holographic and holographic 3D display. (a) Diatomic metasurface of vector holography[124]; (b) full-color complex amplitude vector holography[125]; (c) longitudinal polarization transform stereo vector holography[126]; (d) single-axis 3D holograms[127]; (e) wide-angle 3D holographic display[128]; (f) dynamic color 3D holographic display[129]](/Images/icon/loading.gif)
Fig. 6. Holographic and holographic 3D display. (a) Diatomic metasurface of vector holography[124]; (b) full-color complex amplitude vector holography[125]; (c) longitudinal polarization transform stereo vector holography[126]; (d) single-axis 3D holograms[127]; (e) wide-angle 3D holographic display[128]; (f) dynamic color 3D holographic display[129]
![Light field display and AR/VR display. (a)(b) Wide-angle light field display using metasurfaces[131-132]; (c)(d) AR/VR display based on metasurfaces[42,133]; (e)(f) AR/VR display utilizing waveguide resonance[134-135]](/Images/icon/loading.gif)
Fig. 7. Light field display and AR/VR display. (a)(b) Wide-angle light field display using metasurfaces[131-132]; (c)(d) AR/VR display based on metasurfaces[42,133]; (e)(f) AR/VR display utilizing waveguide resonance[134-135]
![Computational imaging mechanisms using metasurfaces. (a) Acquisition of real-time brain spectrum in rats using compressed sensing[136]; (b) retrieval of object spectral light field information through spatial-spectral coupling with metasurfaces[106]; (c) on-chip spectral imaging achieved by integrating neural networks with compressed sensing[137]; (d) facial recognition based on spectral information[138]](/Images/icon/loading.gif)
Fig. 8. Computational imaging mechanisms using metasurfaces. (a) Acquisition of real-time brain spectrum in rats using compressed sensing[136]; (b) retrieval of object spectral light field information through spatial-spectral coupling with metasurfaces[106]; (c) on-chip spectral imaging achieved by integrating neural networks with compressed sensing[137]; (d) facial recognition based on spectral information[138]
![Metasurface-based microscopic imaging techniques. (a) Metasurface-assisted fiber-optic endoscopic imaging[139]; (b) photonic chip-based structural illumination microsurgery[140]; (c) three-dimensional high-resolution tomography based on metasystems[141]; (d) confocal microscopic imaging based on subwavelength devices[142]](/Images/icon/loading.gif)
Fig. 9. Metasurface-based microscopic imaging techniques. (a) Metasurface-assisted fiber-optic endoscopic imaging[139]; (b) photonic chip-based structural illumination microsurgery[140]; (c) three-dimensional high-resolution tomography based on metasystems[141]; (d) confocal microscopic imaging based on subwavelength devices[142]
![Optical micromanipulation technology. (a) Multi-dimensional integrated optical tweezer-light wrench[144]; (b) multifunctional optical tweezers for micro-manipulation technology[145]; (c) spatial 3D display technology based on photophoresis technology[146]; (d) simultaneous capture and imaging along the optical axis[17]](/Images/icon/loading.gif)
Fig. 10. Optical micromanipulation technology. (a) Multi-dimensional integrated optical tweezer-light wrench[144]; (b) multifunctional optical tweezers for micro-manipulation technology[145]; (c) spatial 3D display technology based on photophoresis technology[146]; (d) simultaneous capture and imaging along the optical axis[17]
![Dynamically tunable metasurfaces. (a) Adjustable focal length imaging realized through physical movement by an electric motor[147]; (b) dynamic beam control using a moiré metasurface based on dual-layer twisting[148]; (c) quasi-continuous tunable active metasurfaces achieved with GSST[149]; (d) dynamic display facilitated by the combination of liquid crystal and metasurfaces[150]; (e) control of wavefront evolution using ultrafast frequency pulses[151]; (f) dynamic holographic display utilizing the multiplexing of vortex beams[152]](/Images/icon/loading.gif)
Fig. 11. Dynamically tunable metasurfaces. (a) Adjustable focal length imaging realized through physical movement by an electric motor[147]; (b) dynamic beam control using a moiré metasurface based on dual-layer twisting[148]; (c) quasi-continuous tunable active metasurfaces achieved with GSST[149]; (d) dynamic display facilitated by the combination of liquid crystal and metasurfaces[150]; (e) control of wavefront evolution using ultrafast frequency pulses[151]; (f) dynamic holographic display utilizing the multiplexing of vortex beams[152]
![Quantum imaging and holography based on metasurface. (a) Metasurface-mediated quantum entanglement imaging[154]; (b) metasurface-enabled quantum edge detection[155]; (c) polarization-sensitive metasurface prediction imaging[156]; (d) conventional quantum holography[157]; (e) OAM high-dimensional entangled quantum holography[158]](/Images/icon/loading.gif)
Fig. 12. Quantum imaging and holography based on metasurface. (a) Metasurface-mediated quantum entanglement imaging[154]; (b) metasurface-enabled quantum edge detection[155]; (c) polarization-sensitive metasurface prediction imaging[156]; (d) conventional quantum holography[157]; (e) OAM high-dimensional entangled quantum holography[158]
|
Table 1. Performance parameters of metalens imaging
|
Table 2. Performance parameters of the display technology based on metasurface

Set citation alerts for the article
Please enter your email address